

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
74LVX3245

8-Bit, Dual-Supply Translating Transceiver with 3-State Outputs

Features

- Bidirectional Interface Between 3 V and 5 V Buses
- Inputs Compatible with TTL Level
- 3 V Data Flow at A-Port and 5 V Data Flow at BPort
- Outputs Source / Sink: 24 mA
- Guaranteed Simultaneous Switching Noise Level and Dynamic Threshold Performance
- Implements Proprietary EMI Reduction Circuitry
- Functionally Compatible with the 74 Series 245

Related Resources

- AN-5001 - Using Fairchild's LVX Low-Voltage Dual-Supply CMOS Translating Transceivers

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
74LVX3245QSC	-40 to $+85^{\circ} \mathrm{C}$	24-Lead Quarter-Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide	Tubes
74LVX3245QSCX			Tape and Reel
74LVX3245MTC		24-Lead Thin-Shrink Small-Outline Package (TSSOP), JEDEC MO-153, 4.4 mm Wide	Tubes
74LVX3245MTCX			Tape and Reel

Logic Symbol

Figure 1. Logic Symbol

Pin Configuration

Figure 2. Pin Configuration

Pin Definitions

Pin \#	Name	Description
1	$\mathrm{~V}_{\mathrm{CCA}}$	Supply Voltage
2	$\mathrm{~T} / \mathrm{R}$	Transmit/Receive Input
$3,4,5,6,7,8,9,10$	$\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}$, $\mathrm{A}_{5}, \mathrm{~A}_{6}, \mathrm{~A}_{7}$	Port-A Inputs or 3-State Outputs
$11,12,13$	GND	Ground
$14,15,16,17,18,19$, 20,21	$\mathrm{B}_{7}, \mathrm{~B}_{6}, \mathrm{~B}_{5}, \mathrm{~B}_{4}, \mathrm{~B}_{3}$, $\mathrm{B}_{2}, \mathrm{~B}_{1}, \mathrm{~B}_{0}$	Port-B Inputs or 3-State Outputs
22	$/ \mathrm{OE}$	Output Enable Input
23	NC	No Connect
24	$\mathrm{~V}_{\mathrm{CCB}}$	Supply Voltage

Logic Diagram

Figure 3. Logic Diagram

Table 1. Truth Table

Inputs		Outputs
$/ \mathrm{OE}$	T/R	
L	L	Bus B Data to Bus A
L	H	Bus A Data to Bus B
H	X	HIGH-Z State

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X = Immaterial

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Min.	Max.	Unit
$\mathrm{V}_{\text {CCA }}, \mathrm{V}_{\text {CCB }}$	Supply Voltage			-0.5	7.0	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage; (/OE, T/R)			-0.5	$\begin{aligned} & \mathrm{V}_{\mathrm{CCA}} \\ & +0.5 \end{aligned}$	V
$\mathrm{V}_{1 / \mathrm{O}}$	DC Input / Output Voltage		A_{n}	-0.5	$\begin{gathered} \mathrm{V}_{\mathrm{CCA}} \text { to } \\ +0.5 \end{gathered}$	V
			B_{n}	-0.5	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}} \text { to } \\ +0.5 \end{gathered}$	
I_{N}	DC Input Diode Current (/OE and T/R)				± 20	mA
lok	DC Output Diode Current				± 50	mA
Io	DC Output Source or Sink Current				± 50	mA
ICC or $\mathrm{IGND}^{\text {d }}$	DC V ${ }_{\text {cc }}$ or Ground Current	Output Pin			± 50	mA
		Maximum Current at	ICCA		± 100	
			$\mathrm{I}_{\text {CCB }}$		± 200	
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range			-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {SINK }}$	DC Latch-Up Source or Sink Current				± 300	mA
T_{J}	Maximum Junction Temperature Under Bias				+150	${ }^{\circ} \mathrm{C}$
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114			2500	V

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Max.	Unit
$V_{\text {CCA }}$	Supply Voltage		2.7	3.6	V
$\mathrm{V}_{\text {CCB }}$			4.5	5.5	
V_{1}	Input Voltage (/OE and T/R)		0	$V_{\text {CCA }}$	V
$\mathrm{V}_{1 / \mathrm{O}}$	DC Input / Output Voltage	A_{n}	0	$\mathrm{V}_{\text {CCA }}$	V
		B_{n}	0	$\mathrm{V}_{\text {CCB }}$	
T_{A}	Operating Temperature, Free Air		-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta V$	Minimum Input Edge Rate ($\mathrm{V}_{\text {IN }}$ from 30 to 70% of $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}$ at 3.0 V , 4.5 V, and 5.5 V)			8	ns/V

Note:

1. Unused pins (inputs and I/O's) must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter		Conditions	$V_{\text {CCA }}$ (V)	$\mathrm{V}_{\mathrm{CCB}}$ (V)	$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$	Unit	
			Typ.			Gua	anteed Limits			
$\mathrm{V}_{\text {IHA }}$	Minimum HIGH Level Input Voltage	$A_{n}, T / R$, /OE		$\begin{aligned} & \mathrm{V}_{\text {OUT }} \leq 0.1 \mathrm{~V} \text { or } \\ & \geq \mathrm{V}_{\text {CC }}-0.1 \mathrm{~V} \end{aligned}$	3.6	5.0		2.0	2.0	
			2.7		5.0		2.0	2.0		
$\mathrm{V}_{\text {IHB }}$		B_{n}	3.3		4.5		2.0	2.0		
			3.3		5.5		2.0	2.0		
$V_{\text {ILA }}$	Minimum LOW Level Input Voltage	$\begin{aligned} & A_{n}, T / R, \\ & / O E \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }} \leq 0.1 \mathrm{~V} \text { or } \\ & \geq \mathrm{V}_{\text {CC }}-0.1 \mathrm{~V} \end{aligned}$	3.6	5.0		0.8	0.8		
				2.7	5.0		0.8	0.8		
$V_{\text {ILB }}$		B_{n}		3.3	4.5		0.8	0.8		
				3.3	5.5		0.8	0.8		
$\mathrm{V}_{\text {OHA }}$	Minimum HIGH Level Output Voltage		lout $=-100 \mu \mathrm{~A}$	3.0	4.5	2.99	2.90	2.90	V	
			$\mathrm{I}_{\text {OH }}=-24 \mathrm{~mA}$	3.0	4.5	2.65	2.35	2.25		
			$\mathrm{I}_{\text {OH }}=-12 \mathrm{~mA}$	2.7	4.5	2.50	2.30	2.20		
			$\mathrm{I}_{\text {OH }}=-24 \mathrm{~mA}$	2.7	4.5	2.30	2.10	2.00		
$V_{\text {онв }}$			lout $=-100 \mu \mathrm{~A}$	3.0	4.5	4.50	4.40	4.40		
			$\mathrm{I}_{\text {OH }}=-24 \mathrm{~mA}$	3.0	4.5	4.25	3.86	3.76		
Vola	Minimum LOW Level Output Voltage		lout $=100 \mu \mathrm{~A}$	3.0	4.5	0.002	0.100	0.100		
			$\mathrm{l}_{\text {он }}=24 \mathrm{~mA}$	3.0	4.5	0.210	0.360	0.440		
			$\mathrm{l}_{\mathrm{OH}}=12 \mathrm{~mA}$	2.7	4.5	0.110	0.360	0.440	V	
			$\mathrm{l}_{\text {он }}=24 \mathrm{~mA}$	2.7	4.5	0.220	0.420	0.500	V	
$V_{\text {OLB }}$			lout $=100 \mu \mathrm{~A}$	3.0	4.5	0.002	0.100	0.100		
			$\mathrm{l}_{\text {он }}=24 \mathrm{~mA}$	3.0	4.5	0.180	0.360	0.440		
1 N	Maximum Input Leakage Current; /OE, T/R		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CCB }}, \mathrm{GND}$	3.6	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	
loza	Maximum 3-State Output Leakage; A_{n}		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} ; \\ & / \mathrm{OE}=\mathrm{V}_{\mathrm{CCA}} ; \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CCA}}, G N D \end{aligned}$	3.6	5.5		± 0.5	± 5.0	$\mu \mathrm{A}$	
lozb	Maximum 3-State Output Leakage; B_{n}		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} ; \\ & / \mathrm{OE}=\mathrm{V}_{\mathrm{CCA}} ; \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CCB}}, \mathrm{GND} \end{aligned}$	3.6	5.5		± 0.5	± 5.0	$\mu \mathrm{A}$	
$\Delta \mathrm{lcc}$	Maximum ICCT/Input at	B_{n}	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CCB }}-2.1 \mathrm{~V}$	3.6	5.5	1.00	1.35	1.50	mA	
		$\begin{aligned} & A_{n}, T / R, \\ & \text { CF } \end{aligned}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CCA }}-0.6 \mathrm{~V}$	3.6	5.5		0.35	0.50		
Icca	Quiescent $\mathrm{V}_{\text {cca }}$ Supply Current		$\begin{aligned} & \mathrm{A}_{\mathrm{n}}=\mathrm{V}_{\text {CCA }} \text { or GND, } \\ & \mathrm{B}_{\mathrm{n}}=\mathrm{V}_{\text {CCB }} \text { or GND, } \\ & / \mathrm{OE}=\mathrm{GND}, \\ & \mathrm{~T} / \mathrm{R}=\mathrm{GND} \end{aligned}$	3.6	5.5		5	50	$\mu \mathrm{A}$	
$I_{\text {ccb }}$	Quiescent $\mathrm{V}_{\text {CcB }}$ Supply Current		$\begin{aligned} & \mathrm{A}_{\mathrm{n}}=\mathrm{V}_{\mathrm{CCA}} \text { or GND, } \\ & \mathrm{B}_{\mathrm{n}}=\mathrm{V}_{\mathrm{CCB}} \text { or GND, } \\ & / \mathrm{OE}=\mathrm{GND}, \\ & \mathrm{~T} / \mathrm{R}=\mathrm{V}_{\mathrm{CCA}} \end{aligned}$	3.6	5.5		8	80		

Continued on the following page...

DC Electrical Characteristics (Continued)

			$\mathrm{V}_{\text {cca }}$	$\mathrm{V}_{\text {cci }}$	$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$		-40 to $+85^{\circ} \mathrm{C}$	Unit
			(V)	(V)	Typ.	Guar	anteed Limits	
Volpa	Quiet Output Maximum Dynamic $\mathrm{V}_{\mathrm{OL}}{ }^{(2,3)}$		3.3	5.0		0.8		V
Volpb			3.3	5.0		1.5		
Volva	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}{ }^{(2,3)}$		3.3	5.0		-0.8		V
Volvb			3.3	5.0		-1.2		
$\mathrm{V}_{\text {IHDA }}$	Minimum HIGH Level Dynamic Input Voltage ${ }^{(2,4)}$		3.3	5.0		2.0		V
$\mathrm{V}_{\text {IHdB }}$			3.3	5.0		2.0		
$\mathrm{V}_{\text {ILDA }}$	Maximum LOW Level Dynamic Input Voltage ${ }^{(2,4)}$		3.3	5.0		0.8		V
VILDB			3.3	5.0		0.8		

Notes:

2. Worst-case package.
3. Maximum number of outputs defined as (n). Data inputs are driven 0 V to V_{cc} level; one output at GND.
4. Maximum number of data inputs (n) switching. ($n-1$) inputs switching 0 V to V_{CC} level. Input-under-test switching; V_{CC} level to threshold ($\mathrm{V}_{\mathrm{IHD}}$), OV to threshold ($\mathrm{V}_{\mathrm{ILD}}$), $\mathrm{f}=1 \mathrm{MHz}$.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{~V}_{\mathrm{CCA}}=3.3 \mathrm{~V}^{(5)}, \\ \mathrm{V}_{\mathrm{CCB}}=5.0 \mathrm{~V}^{(6)^{\prime}} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{CCA}}=3.3 \mathrm{~V}^{(5)}, \\ \mathrm{V}_{\mathrm{CCB}}=5.0 \mathrm{~V}^{(6)} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{~V}_{\mathrm{CCA}}=2.7 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{CCB}}=5.0 \mathrm{~V} \end{gathered}$		Unit
		Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay A to B	1.0	5.4	8.0	1.0	8.5	1.0	9.0	ns
		1.0	5.6	7.5	1.0	8.0	1.0	8.5	
	Propagation Delay B to A	1.0	5.1	7.5	1.0	8.0	1.0	8.5	
		1.0	5.7	7.5	1.0	8.0	1.0	8.5	
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Output Enable Time /OE to B	1.0	4.8	8.0	1.0	8.5	1.0	9.0	ns
		1.0	6.3	8.5	1.0	9.0	1.0	9.5	
	Output Enable Time /OE to A	1.0	6.3	8.5	1.0	9.0	1.0	9.5	
		1.0	6.8	9.0	1.0	9.5	1.0	10.0	
$t_{\text {Phz }}$, tPLZ	Output Disable Time /OE to B	1.0	5.3	7.5	1.0	8.0	1.0	8.5	ns
		1.0	4.2	7.0	1.0	7.5	1.0	8.0	
	Output Disable Time /OE to A	1.0	5.3	8.0	1.0	8.5	1.0	9.0	
		1.0	3.7	6.5	1.0	7.0	1.0	7.5	
toshl, tosth	Output to Output Skew, Data to Output ${ }^{(7)}$		1.0	1.5		1.5		1.5	ns

Notes:

5. Voltage range 3.3 V is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.
6. Voltage range 5.0 V is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
7. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshl) or LOW-to-HIGH (tosLh). Parameter guaranteed by design.

Capacitance

Symbol	Parameter		Conditions	Typ.	Unit
$\mathrm{Clin}^{\text {a }}$	Input Capacitance		$\mathrm{V}_{\mathrm{cc}}=$ Open	4.5	pF
Cl_{10}	Input / Output Capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CCA}}=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CCB}}=5.0 \mathrm{~V} \end{aligned}$	15	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance ${ }^{(8)}$	A to B	$\begin{aligned} & \mathrm{V}_{\mathrm{CCA}}=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CCB}}=5.0 \mathrm{~V} \end{aligned}$	55	pF
		B to A		40	

Note

8. $\mathrm{C}_{\text {PD }}$ is measured at 10 MHz .

8-Bit Dual-Supply Translating Transceiver

The 74LVX3245 is a dual-supply device capable of bidirectional signal translation. This level shifting ability provides an efficient interface between low-voltage CPU local bus with memory and a standard bus defined by $5 \mathrm{~V} \mathrm{I/O} \mathrm{levels}$. controlled by the low-voltage CPU and core logic or a bus arbitrator with $5 \mathrm{VI} / \mathrm{O}$ levels.

Manufactured on a sub-micron CMOS process, the 74LVX3245 is ideal for mixed voltage applications such as notebook computers using 3.3 V CPUs and 5 V peripheral devices.

Figure 4. Application Example

Table 2. Low Voltage Translator Power-Up Sequencing

Device	$\mathbf{V}_{\text {cCA }}$	$\mathbf{V}_{\text {cCB }}$	T/R	/OE	A-Side I/O	B-Side I/O	Floatable Pin Allowed
74 LVX 3245	3 V (Power-Up First)	5 V Configurable	Ramp with $\mathrm{V}_{C C A}$	Ramp with $\mathrm{V}_{C C A}$	Logic 0 V or $\mathrm{V}_{C C A}$	Outputs	No

TOP VIEW $\quad \oplus \mid 0.178(\mathbb{C}|C| A-B \mid D$

LAND PATTERN RECOMMENDATION

SIDE VIEW

NOTES:
A. THIS PACKAGE CONFORMS TO JEDEC M0-137 VARIATION AE
B. ALL DIMENSIONS ARE IN MILLIMETERS
C. DIMENSIONING AND TOLERANCES PER ANSI Y14.5M, 2009.
D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
E. LAND PATTERN STANDARD: SOP63P600X175-24M.
F. DRAWING FILE NAME: MKT-MQA24rev3

END VIEW

DETAIL A

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSX3018MUTAG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CSW\#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ ADG3241BKSZ500RL7

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

