

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]

Functional Description

The LVX573 contains eight D-type latches. When the enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable (OE) input. When $\overline{\mathrm{OE}}$ is LOW, the buffers are enabled. When $\overline{\mathrm{OE}}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Table

Inputs			Outputs
$\overline{\text { OE }}$	LE	D	$\mathbf{O}_{\mathbf{n}}$
L	H	H	H
L	H	L	L
L	L	X	O_{0}
H	X	X	Z

H = HIGH Voltage
L = LOW Voltage
Z = High Impedance
$\mathrm{X}=$ Immaterial
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH-to-LOW transition of Latch Enable

Logic Diagram

Absolute Maximum Ratings(Note 1)		Recommended Operating Conditions (Note 2)
Supply Voltage (V_{CC})	-0.5 V to +7.0 V	
DC Input Diode Current (1/1)		Supply Voltage (V_{CC}) 2.0 V to 3.6 V
$\mathrm{V}_{1}=-0.5 \mathrm{~V}$	-20 mA	Input Voltage (V_{l}) $\mathrm{V}^{\text {a }}$ (to 5.5 V
DC Input Voltage (V_{1})	-0.5 V to 7 V	Output Voltage (V_{O}) $\mathrm{O}^{\text {a }}$ to V_{CC}
DC Output Diode Current (lok)		Operating Temperature (T_{A}) $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA	Input Rise and Fall Time ($\Delta t / \Delta \mathrm{V}$) $0 \mathrm{~ns} / \mathrm{V}$ to $100 \mathrm{~ns} / \mathrm{V}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	+20 mA	
DC Output Voltage (V_{O})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed The device should not be
DC Output Source or Sink Current (l_{O})	$\pm 25 \mathrm{~mA}$	operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings.
DC V_{CC} or Ground Current		The "Recommended Operating Conditions" table will define the conditions for actual device operation.
(Icc or $\mathrm{I}_{\text {gnd }}$)	$\pm 75 \mathrm{~mA}$	Note 2: Unused inputs must be held HIGH or LOW. They may not tloat.
Storage Temperature ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Power Dissipation	180 mW	

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
			Min	Typ	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Time $D_{n} \text { to } O_{n}$	2.7		7.6	14.5	1.0	17.5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
				10.1	18.0	1.0	21.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
		3.3 ± 0.3		5.9	9.3	1.0	11.0		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
				8.4	12.8	1.0	14.5		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Time LE to O_{n}	2.7		8.2	15.6	1.0	18.5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
				10.7	19.1	1.0	22.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
		3.3 ± 0.3		6.4	10.1	1.0	12.0		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
				8.9	13.6	1.0	15.5		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & \hline t_{\mathrm{PZL}} \\ & t_{\mathrm{PZH}} \end{aligned}$	3-STATE Output Enable Time	2.7		7.8	15.0	1.0	18.5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
				10.3	18.5	1.0	22.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
		3.3 ± 0.3		6.1	9.7	1.0	12.0		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
				8.6	13.2	1.0	15.5		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
$\mathrm{t}_{\text {PLZ }}$	3-STATE Output	2.7		12.1	19.1	1.0	22.0	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
$\mathrm{t}_{\text {PHZ }}$	Disable Time	3.3 ± 0.3		10.1	13.6	1.0	15.5		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
t_{W}	LE Pulse	2.7	6.5			7.5		ns	
	Width	3.3 ± 0.3	5.0			5.0			
t_{s}	Setup Time	2.7	5.0			5.0		ns	
	$D_{n} \text { to LE }$	3.3 ± 0.3	3.5			3.5			
t_{H}	Hold Time	2.7	1.5			1.5		ns	
	D_{n} to LE	3.3 ± 0.3	1.5			1.5			
$\mathrm{t}_{\mathrm{OSHL}}$ tosth	Output to Output	2.7			1.5		1.5	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
	Skew (Note 4)	2.3			1.5		1.5		

Note 4: Parameter guaranteed by design. $\mathrm{t}_{\mathrm{OSLH}}=\left|\mathrm{t}_{\mathrm{PLHm}}-\mathrm{t}_{\text {PLHn }}\right|$, $\mathrm{t}_{\mathrm{OSHL}}=\left|\mathrm{t}_{\mathrm{PHLm}}-\mathrm{t}_{\text {PHLn }}\right|$.

Capacitance

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
		Min	Typ	Max	Min	Max	
$\mathrm{C}_{\text {IN }}$	Input Capacitance		4	10		10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		6				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 5)		27				pF

Average operating current can be obtained by the equation: $I_{C C(\text { opr. })}=\frac{\mathrm{C}_{\mathrm{PD}} \times V_{\mathrm{CC}} \times \mathrm{f}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{CC}}}{8 \text { (per latch) }}$

Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Latches category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
ML4875CS-5 401639B 716165RB 74F373DW 74LVC373ADTR2G 74LVC573ADTR2G NL17SG373DFT2G NLV14044BDG 59628863901RA 5962-88639012A NLV14042BDR2G M22W-1333-21/3/45-90-02 (NI 2.L18.001-21 2.T18.001-21 2.T18.002-18 2.T18.006-18 CQ/AA-KEY CQ/A-M22X1,5-45-28 CQ/A-M22X1,5-45-32 M22-2-D5-2-21-01-P CY74FCT2373CTSOC 421283 MM74HC373WM MM74HC573WM 74LCX373MTC 74LVT16373MTDX 74VHC373MX KLD5.001-02 KLT9.001-02 Z-0233-827-15 MIC58P01YV 74AHCT573D. 112 74LCX16373MTDX CQ/A-M22X1,5-45-16 CQ/A-M22X1,5-45-18 CQ/A-M22X1,5-45-20 CQ/A-M22X1,5-45-24 CQ/A-M22X1,5-45-30 CQT/A-32-18 AE-V0 CQT/A-32 20-AE-V0 CY54FCT841ATDMB TPIC6B273DWRG4 Z-2106-25001-22 2.904.005 2.904.006 2.904.008 TC74HC573APF 74HC373DB. 112 74HCT373D. 652 HEF4043BT. 652

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

