

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]

Pin Assignment for FBGA

(Top Thru View)

Pin Descriptions

Pin Names	Description
$\overline{\mathrm{OE}}_{\mathrm{n}}$	Output Enable Input (Active LOW)
CP_{n}	Clock Pulse Input
$\mathrm{I}_{0}-\mathrm{I}_{15}$	Inputs
$\mathrm{O}_{0}-\mathrm{O}_{15}$	Outputs
NC	No Connect

FBGA Pin Assignments

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
\mathbf{A}	O_{0}	NC	$\overline{\mathrm{OE}}_{1}$	CP_{1}	NC	I_{0}
\mathbf{B}	O_{2}	O_{1}	NC	NC	I_{1}	I_{2}
\mathbf{C}	O_{4}	O_{3}	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	I_{3}	I_{4}
\mathbf{D}	O_{6}	O_{5}	GND	GND	I_{5}	I_{6}
\mathbf{E}	O_{8}	O_{7}	GND	GND	I_{7}	I_{8}
\mathbf{F}	O_{10}	O_{9}	GND	GND	I_{9}	I_{10}
\mathbf{G}	O_{12}	O_{11}	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	I_{11}	I_{12}
\mathbf{H}	O_{14}	O_{13}	NC	NC	I_{13}	I_{14}
\mathbf{J}	O_{15}	NC	$\overline{\mathrm{OE}}_{2}$	CP_{2}	NC	I_{15}

Truth Tables

Inputs			Outputs
CP_{1}	$\overline{\mathrm{OE}}_{1}$	$\mathrm{I}_{0}-\mathrm{I}_{7}$	$\mathrm{O}_{0}-\mathrm{O}_{7}$
\sim	L	H	H
\sim	L	L	L
L	L	X	O_{0}
X	H	X	Z
Inputs			
CP_{2}	$\overline{\mathrm{OE}}_{2}$	$\mathrm{I}_{8}-\mathrm{I}_{15}$	$\mathrm{O}_{8}-\mathrm{O}_{15}$
\sim	L	H	H
\sim	L	L	L
L	L	X	O_{0}
X	H	X	Z

H = HIGH Voltage Leve
L = LOW Voltage Level
$X=$ Immaterial (HIGH or LOW, inputs may not float)
= High Impedance
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH-to-LOW of CP

Functional Description

The 74VCX16374 consists of sixteen edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16 -bit operation. Each clock has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each
flip-flop will store the state of their individual I inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP_{n}) transition. With the Output Enable ($\overline{\mathrm{OE}}_{n}$) LOW, the contents of the flip-flops are available at the outputs. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH, the outputs go to the high impedance state. Operations of the $\overline{\mathrm{EE}}_{\mathrm{n}}$ input does not affect the state of the flip-flops

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 4)	
Supply Voltage (V_{CC})	-0.5 V to +4.6 V
DC Input Voltage (V_{l})	-0.5 V to +4.6 V
Output Voltage (V)	
Outputs 3-STATED	-0.5 V to +4.6 V
Outputs Active (Note 5)	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Diode Current (I_{K}) $\mathrm{V}_{1}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
DC Output Diode Current (lok)	
$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{cc}}$	+50 mA
DC Output Source/Sink Current	
DC $\mathrm{V}_{\text {CC }}$ or GND Current per	
Supply Pin (lcc or GND)	$\pm 100 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating

 Conditions (Note 6)| Power Supply | |
| :--- | ---: |
| Operating | 1.2 V to 3.6 V |
| Input Voltage | -0.3 V to +3.6 V |
| Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$ | |
| Output in Active States | 0 V to V_{CC} |
| Output in "OFF" State | 0.0 V to 3.6 V |
| Output Current in $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$ | |
| $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | $\pm 24 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | $\pm 18 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.3 V | $\pm 6 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V | $\pm 2 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{CC}}=1.2 \mathrm{~V}$ | $\pm 100 \mu \mathrm{~A}$ |
| Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Minimum Input Edge Rate $(\Delta \mathrm{t} / \Delta \mathrm{V})$ | |
| $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ to 2.0 V , $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | $10 \mathrm{~ns} / \mathrm{V}$ |

Note 4: The Absolute Maximum Ratings are those values beyond which he safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the Absolute Maximum Rat ings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 5: I_{O} Absolute Maximum Rating must be observed.
Note 6: Floating or unused inputs must be held HIGH or LOW

DC Electrical Characteristics

Symbol	Parameter	Conditions	V_{Cc} (V)	Min	Max	Units
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage		$\begin{gathered} \hline 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \\ 1.2 \end{gathered}$	2.0 1.6 $0.65 \times V_{C C}$ $0.65 \times V_{C C}$ $0.65 \times V_{C C}$		V
V_{IL}	LOW Level Input Voltage		$\begin{gathered} \hline 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \\ 1.2 \end{gathered}$		0.8 0.7 $0.35 \times V_{C C}$ $0.35 \times V_{C C}$ $0.05 \times V_{C C}$	V
V_{OH}	HIGH Level Output Voltage	$\begin{array}{\|l} \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \\ \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \\ \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ \hline \end{array}$	$2.7-3.6$ 2.7 3.0 3.0 $2.3-2.7$ 2.3 2.3 2.3 $1.65-2.3$ 1.65 $1.4-1.6$ 1.4 1.2	 $\mathrm{V}_{\mathrm{CC}}-0.2$ 2.2 2.4 2.2 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 2.0 1.8 1.7 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 1.25 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 1.05 $\mathrm{~V}_{\mathrm{CC}}-0.2$		V

74VCX16374

AC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Figure Number
				Min	Max		
t_{H}	Hold Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 1.0	1.0		ns	Figures$1,6$
			2.5 ± 0.2	1.0			
			1.8 ± 0.15	1.0			
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	2.0			Figures 6, 7
			1.2	6			
t_{W}	Pulse Width	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	1.5		ns	Figures 1, 4
			2.5 ± 0.2	1.5			
			1.8 ± 0.15	4.0			
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	4.0			Figures 4, 7
			1.2	8			
toshl tosth	Output to Output Skew (Note 9)	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3		0.5	ns	
			2.5 ± 0.2		0.5		
			1.8 ± 0.15		0.75		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1		1.5		
			1.2		1.2		

Note $8: \mathrm{For}_{\mathrm{L}}=50 \mathrm{~F}$, add approximately 300 ps to AC maximum specifation.
Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshl) or LOW-to-HIGH (tos.h)

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$V_{\text {cc }}$ (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
				Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak V_{OL}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	0.25	
			2.5	0.6	V
			3.3	0.8	
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley V_{OL}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	-0.25	
			2.5	-0.6	V
			3.3	-0.8	
$\overline{\mathrm{V}_{\text {OHV }}}$	Quiet Output Dynamic Valley V_{OH}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	1.5	
			2.5	1.9	V
			3.3	2.2	

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
			Typical	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or $3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{CC}	6	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V	7	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{l}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$	20	pF

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{Cc}} 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ to $1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$)

TEST	SWITCH
$t_{\text {PLH }}, t_{\text {PHL }}$	Open
$t_{\text {PZL }}, t_{\text {PLZ }}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} ;$
	$\mathrm{V}_{\mathrm{CC}} \times 2 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} ; 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND
FIGURE 1. AC Test Circuit	

FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

FIGURE 5. Propagation Delay, Pulse Width and $t_{\text {rec }}$ Waveforms

FIGURE 6. Setup Time, Hold Time and Recovery Time for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3} \mathbf{V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8 V} \pm \mathbf{0 . 1 5 V}$
V_{mi}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{Cc}} 0.15 \mathrm{~V} \pm 0.1 \mathrm{~V}$ to 1.2 V)

TEST	SWITCH
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	$\mathrm{V}_{\mathrm{CC}} \times 2 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND
FIGURE 7. AC Test Circuit	

FIGURE 8. Waveform for Inverting and Non-Inverting Functions

FIGURE 9. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 10. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$
	$\mathbf{1 . 5} \pm \mathbf{0 . 1 V}$
V_{mi}	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.1 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.1 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:
A. THIS PACKAGE CONFORMS TO JEDEC M0-205
B. ALL DIMENSIONS IN MILLIMETERS
C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
.35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA54ArevD

54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA54A

www.fairchildsemi.com

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip-Flops category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLV74HC74ADTR2G NLV74HC11ADR2G NTE74LS76A 74LCX16374MTDX MM74HC74AMX 74LVX74MTCX SN74HC273DWR SN74LVC74ADR SN74HC574PWR SN74HC273NSR 74AHC74D. 112 74AUP1G74DC.125 74HC112D.652 74HC574D.652 74HCT173D.652 74HCT174D.652 74HCT374D.652 74AHC574D.118 74HC174D.652 74HC273D.652 74HC374D.652 74HC74D.653 74HC74PW. 112 74HC107D. 652 74HC574D. 653 HEF4013BT. 653 HEF4027BT. 652 74HC107PW. 112 74HC73PW.112 74HCT74PW. 112 74LV74PW. 112 74HC173PW. 112 74HC174PW. 112 74HC175PW. 112 74HC377DB. 118 74HC574PW. 112 74HC73D.652 74HCT175D.652 74LVC1G74DP. 125 74LVC74APW. 112 74VHC174FT(BJ) 74VHC273FT(BJ) 74VHCT574AFT(BJ) 74HCT273DB.118 $\underline{74 H C 107 D B .112}$ 74HC112PW. 112 74HCT74DB. 112 74LVC1G80GV. 125 74LVC1G175GV. 125 74LVC1G79GV. 125

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

