

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]

Connection Diagrams

Pin Assignment for FBGA

(Top Through View)

Pin Descriptions

Pin Names	Description
$\overline{O E}_{n}$	Output Enable Input (Active LOW)
T / \bar{R}_{n}	Transmit/Receive Input
$A_{0}-A_{15}$	Side A Inputs or 3-STATE Outputs
$B_{0}-B_{15}$	Side B Inputs or 3-STATE Outputs
$N C$	No Connect

FBGA Pin Assignments

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
\mathbf{A}	B_{0}	NC	$\mathrm{T} / \overline{\mathrm{R}}_{1}$	$\overline{\mathrm{OE}}_{1}$	NC	A_{0}
\mathbf{B}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	NC	NC	A_{1}	$\mathrm{~A}_{2}$
\mathbf{C}	$\mathrm{~B}_{4}$	$\mathrm{~B}_{3}$	$\mathrm{~V}_{\mathrm{CCB}}$	$\mathrm{V}_{\mathrm{CCA}}$	A_{3}	$\mathrm{~A}_{4}$
\mathbf{D}	$\mathrm{~B}_{6}$	$\mathrm{~B}_{5}$	GND	GND	A_{5}	$\mathrm{~A}_{6}$
\mathbf{E}	$\mathrm{~B}_{8}$	$\mathrm{~B}_{7}$	GND	GND	A_{7}	$\mathrm{~A}_{8}$
\mathbf{F}	$\mathrm{~B}_{10}$	$\mathrm{~B}_{9}$	GND	GND	A_{9}	$\mathrm{~A}_{10}$
\mathbf{G}	$\mathrm{~B}_{12}$	$\mathrm{~B}_{11}$	$\mathrm{~V}_{\mathrm{CCB}}$	$\mathrm{V}_{\mathrm{CCA}}$	A_{11}	$\mathrm{~A}_{12}$
\mathbf{H}	$\mathrm{~B}_{14}$	$\mathrm{~B}_{13}$	NC	NC	A_{13}	$\mathrm{~A}_{14}$
\mathbf{J}	$\mathrm{~B}_{15}$	NC	T / \bar{R}_{2}	$\overline{\mathrm{OE}}_{2}$	NC	A_{15}

Truth Tables

Inputs		Outputs
$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\mathrm{T} / \overline{\mathbf{R}}_{\mathbf{1}}$	
L	L	Bus $\mathrm{B}_{0}-\mathrm{B}_{7}$ Data to Bus $\mathrm{A}_{0}-\mathrm{A}_{7}$
L	H	Bus $\mathrm{A}_{0}-\mathrm{A}_{7}$ Data to Bus $\mathrm{B}_{0}-\mathrm{B}_{7}$
H	X	HIGH Z State on $\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$

Inputs		Outputs
$\overline{\mathrm{OE}}_{\mathbf{2}}$	$\mathrm{T} / \overline{\mathbf{R}}_{\mathbf{2}}$	
L	L	Bus $\mathrm{B}_{8}-\mathrm{B}_{15}$ Data to Bus $\mathrm{A}_{8}-\mathrm{A}_{15}$
L	H	Bus $\mathrm{A}_{8}-\mathrm{A}_{15}$ Data to Bus $\mathrm{B}_{8}-\mathrm{B}_{15}$
H	X	HIGH-Z State on $\mathrm{A}_{8}-\mathrm{A}_{15}, \mathrm{~B}_{8}-\mathrm{B}_{15}$

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial (HIGH or LOW, inputs may not float)
$\mathrm{Z}=$ High Impedance

Translator Power Up Sequence Recommendations

To guard against power up problems, some simple guidelines need to be adhered to. The VCX164245 is designed so that the control pins ($\mathrm{T} / \overline{\mathrm{R}}_{\mathrm{n}}, \overline{\mathrm{OE}}_{\mathrm{n}}$) are supplied by $\mathrm{V}_{\mathrm{CCB}}$. Therefore the first recommendation is to begin by powering up the control side of the device, $\mathrm{V}_{\mathrm{CCB}}$. The OE_{n} control pins should be ramped with or ahead of $\mathrm{V}_{\mathrm{CCB}}$, this will guard against bus contentions and oscillations as all A Port and B Port outputs will be disabled. To ensure the high impedance state during power up or power down, $\overline{\mathrm{OE}}_{\mathrm{n}}$ should be tied to $\mathrm{V}_{\mathrm{CCB}}$ through a pull up resistor. The minimum value of the resistor is determined by the current
sourcing capability of the driver. Second, the T / \bar{R}_{n} control pins should be placed at logic low (OV) level, this will ensure that the B -side bus pins are configured as inputs to help guard against bus contention and oscillations. B-side Data Inputs should be driven to a valid logic level (0 V or $\mathrm{V}_{\mathrm{CCB}}$), this will prevent excessive current draw and oscillations. $\mathrm{V}_{\text {CCA }}$ can then be powered up after $\mathrm{V}_{\mathrm{CCB}}$, but should never exceed the $\mathrm{V}_{\mathrm{CCB}}$ voltage level. Upon completion of these steps the device can then be configured for the users desired operation. Following these steps will help to prevent possible damage to the translator device as well as other system components.

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$,						Units
		$\begin{gathered} \mathrm{V}_{\mathrm{CCA}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CCB}}=2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCA}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CCA}}=2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$		
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay, A to B	0.8	5.5	0.6	5.1	0.6	4.0	ns
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay, B to A	1.5	5.8	1.5	6.2	0.8	4.4	ns
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Output Enable Time, OE to B	0.8	5.3	0.6	5.1	0.6	4.0	ns
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Output Enable Time, OE to A	1.5	8.3	1.5	8.2	0.8	4.6	ns
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PHZ }}$	Output Disable Time, OE to B	0.8	5.2	0.8	5.6	0.8	4.8	ns
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PHZ }}$	Output Disable Time, OE to A	0.8	4.6	0.8	4.5	0.8	4.4	ns
$\mathrm{t}_{\text {osHL }}$ $\mathrm{t}_{\mathrm{osLH}}$	Output to Output Skew (Note 8)		0.5		0.5		0.75	ns

Note 8: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{osHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{osLH}}$)

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {ccA }}$	$\mathrm{V}_{\text {CCB }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
			(V)	(V)	Typical	
$\overline{\mathrm{V}_{\text {OLP }}}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$,	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	2.5	0.25	V
	B to A		1.8	3.3	0.25	
			2.5	3.3	0.6	
	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$,	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	2.5	0.6	V
	A to B		1.8	3.3	0.8	
			2.5	3.3	0.8	
$\overline{\mathrm{V}} \mathrm{OLV}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$,	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	2.5	-0.25	v
	B to A		1.8	3.3	-0.25	
			2.5	3.3	-0.6	
	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$, A to B	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	2.5	-0.6	v
			1.8	3.3	-0.8	
			2.5	3.3	-0.8	
$\mathrm{V}_{\text {OHV }}$	Quiet Output Dynamic Valley V_{OH}, A to B	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	2.5	1.7	v
			1.8	3.3	2.0	
			2.5	3.3	2.0	
	Quiet Output Dynamic Valley V_{OH}, B to A	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	2.5	1.3	v
			1.8	3.3	1.3	
			2.5	3.3	1.7	

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
			Typical	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{CCA}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CCA} / \mathrm{B}}$	5	pF
$\mathrm{C}_{\text {I/O }}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CCA}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CCA} / \mathrm{B}}$	6	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	$\begin{aligned} & V_{\mathrm{CCA}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CCA} / \mathrm{B}} \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$	20	pF

AC Loading and Waveforms

FIGURE 1. AC Test Circuit

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}$	OPEN
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\text {PLZ }}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} ;$
	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V} ; 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

FIGURE 2. Waveform for Inverting and Non-inverting Functions $t_{R}=t_{F} \leq 2.0 \mathrm{~ns}, \mathbf{1 0 \%}$ to 90%

FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic $t_{R}=t_{F} \leq 2.0 \mathrm{~ns}, 10 \%$ to 90%

FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic $t_{R}=t_{F} \leq 2.0 \mathrm{~ns}, 10 \%$ to 90%

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8 V} \pm \mathbf{0 . 1 5 V}$
V_{mi}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:
A. THIS PACKAGE CONFORMS TO JEDEC M0-205
B. ALL DIMENSIONS IN MILLIMETERS
C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)

35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA54ArevD
54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
Package Number BGA54A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bus Transceivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74LS645N PI74LVCC3245AS 5962-8683401DA 5962-8968201LA 5962-8953501KA 5962-86834012A 5962-7802002MFA
TC74VCX164245(EL,F MC74LCX245MNTWG TC7WPB8306L8X,LF(S MM74HC245AMTCX 74LVX245MTC 74ALVC16245MTDX
74LCXR162245MTX 74LVXC3245MTCX 74VHC245M 74VHC245MX JM38510/65553BRA FXL2TD245L10X 74LVC1T45GM,115
74LVC245ADTR2G TC74AC245P(F) SNJ54LS245FK 74LVT245BBT20-13 74AHC245D.112 74AHCT245D. 112
SN74LVCH16952ADGGR CY74FCT16245TPVCT 74AHCT245PW. 118 74LV245DB. 118 74LV245D. 112 74LV245PW. 112
74LVC2245APW. 112 74LVCH245AD. 112 SN75138NSR AP54RHC506ELT-R AP54RHC506BLT-R 74LVCR162245ZQLR
SN74LVCR16245AZQLR MC100EP16MNR4G MC100LVEP16MNR4G 714100R 74HCT643N MC100EP16DTR2G 5962-9221403MRA
74ALVC164245PAG 74FCT16245ATPAG 74FCT16245ATPVG 74FCT16245ETPAG 74FCT245CTSOG

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

