

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

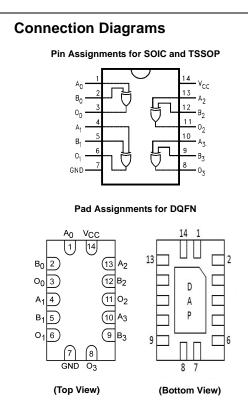
FAIRCHILD SEMICONDUCTOR®	July 1999 Revised December 2013
74VCX86 Low Voltage Quad 2-Input Ex 3.6V Tolerant Inputs and Out	
General Description The VCX86 contains four 2-input exclusive OR gates. This product is designed for low voltage (1.2V to 3.6V) V _{CC} applications with I/O compatibility up to 3.6V The 74VCX86 is fabricated with an advanced CMOS tech- nology to achieve high-speed operation while maintaining low CMOS power dissipation.	Features 1.2V to 3.6V V _{CC} supply operation 3.6V tolerant inputs and outputs t_{PD} 3.0 ns max for 3.0V to 3.6V V _{CC} Power-off high impedance inputs and outputs Static Drive (I_{OH}/I_{OL}) ± 24 mA @ 3.0V V _{CC} Uses proprietary noise/EMI reduction circuitr Latchup performance exceeds JEDEC 78 conditions ESD performance: Human body model > 2000V Machine model > 250V Leadless Pb-Free DQFN package

Ordering Code:

Order Number F	Package Number	Package Description
74VCX86M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74VCX86BQX (Note 1)	MLP014A	Pb-Free 14-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDE MO-241, 2.5 x 3.0mm
74VCX86MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Pb-Free package per		cify by appending the suffix letter "X" to the ordering code.

74VCX86

Logic Symbol IEEE/IEC $A_0 = 1$ $B_0 = 1$


A ₁ —	0,
B ₁ —	- 4
A ₂ —	0,
в ₂ —	•2
Α ₃ —	03
B ₃ —	. 03

00

Pin Descriptions

Pin Names	Description
A _n , B _n	Inputs
On	Outputs
DAP	No Connect

Note: DAP (Die Attach Pad)

www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (V _I)	-0.5V to +4.6V
Output Voltage (V _O)	
HIGH or LOW State (Note 3)	–0.5V to V _{CC} +0.5V
$V_{CC} = 0V$	-0.5V to +4.6V
DC Input Diode Current (I _{IK}) $V_I < 0V$	–50 mA
DC Output Diode Current (I _{OK})	
$V_{O} < 0V$	–50 mA
$V_{O} > V_{CC}$	+50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V_{CC} or GND Current per	
Supply Pin (I _{CC} or Ground)	±100 mA
Storage Temperature Range (T_{STG})	–65°C to +150°C

Recommended Operating Conditions (Note 4)				
Power Supply				
Operating	1.2V to 3.6V			
Input Voltage	-0.3V to +3.6V			
Output Voltage (V _O)				
HIGH or LOW State	0V to V_{CC}			
Output Current in I _{OH} /I _{OL}				
V _{CC} = 3.0V to 3.6V	±24 mA			
$V_{CC} = 2.3V$ to 2.7V	±18 mA			
V _{CC} = 1.65V to 2.3V	±6 mA			
V _{CC} = 1.4V to 1.6V	±2 mA			
$V_{CC} = 1.2V$	±100 μA			
Free Air Operating Temperature (T _A)	-40°C to +85°C			
Minimum Input Edge Rate ($\Delta t/\Delta V$)				
$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V			
Note 2. The Absolute Maximum Datings are these	values housed which			

74VCX86

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

Note 4: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
VIH	HIGH Level Input Voltage		2.7 - 3.6	2.0		
			2.3 - 2.7	1.6		
			1.65 - 2.3	$0.65 \times V_{CC}$		V
			1.4 - 1.6	$0.65 \times V_{CC}$		
			1.2	$0.65 \times V_{CC}$		
V _{IL}	LOW Level Input Voltage		2.7 - 3.6		0.8	
			2.3 - 2.7		0.7	
			1.65 - 2.3		$0.35\times V_{CC}$	V
			1.4 - 1.6		$0.35 \times V_{CC}$	
			1.2			
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7 - 3.6	V _{CC} - 0.2		
		I _{OH} = -12 mA	2.7	2.2		
		I _{OH} = -18 mA	3.0	2.4		
		I _{OH} = -24 mA	3.0	2.2		
		I _{OH} = -100 μA	2.3 - 2.7	V _{CC} - 0.2		
		I _{OH} = -6 mA	2.3	2.0		
		I _{OH} = -12 mA	2.3	1.8		V
		I _{OH} = -18 mA	2.3	1.7		
		$I_{OH} = -100 \ \mu A$	1.65 - 2.3	V _{CC} - 0.2		
		I _{OH} = -6 mA	1.65	1.25		
		$I_{OH} = -100 \ \mu A$	1.4 - 1.6	V _{CC} - 0.2		
		$I_{OH} = -2 \text{ mA}$	1.4	1.05		
		I _{OH} = -100 μA	1.2	V _{CC} - 0.2		

www.fairchildsemi.com

74VCX86

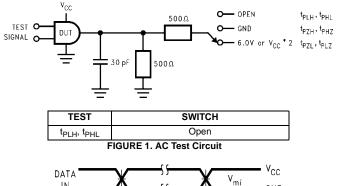
DC Electrical Characteristics (Continued)

V_{CC} Symbol Parameter Conditions Min Max Units (V) $I_{OL} = 100 \ \mu A$ V_{OL} LOW Level Output Voltage 2.7 - 3.6 0.2 $I_{OL} = 12 \text{ mA}$ 2.7 0.4 $I_{OL} = 18 \text{ mA}$ 3.0 0.4 I_{OL} = 24 mA 3.0 0.55 $I_{OL} = 100 \ \mu A$ 2.3 - 2.7 0.2 $I_{OL} = 12 \text{ mA}$ 2.3 0.4 V I_{OL} = 18 mA 2.3 0.6 $I_{OL} = 100 \ \mu A$ 1.65 - 2.3 0.2 $I_{OL} = 6 \text{ mA}$ 1.65 0.3 $I_{OL} = 100 \ \mu A$ 1.4 - 1.6 0.2 $I_{OL} = 2 \text{ mA}$ 1.4 0.35 $I_{OL} = 100 \ \mu A$ 1.2 0.05 Input Leakage Current $0 \leq V_I \leq 3.6V$ 1.2 - 3.6 ±5.0 μА I_I Power-OFF Leakage Current 10 $0 \leq \left(V_I, \; V_O\right) \leq 3.6 V$ 0 μΑ IOFF $V_I = V_{CC} \text{ or } GND$ Quiescent Supply Current 1.2 - 3.6 20 I_{CC} μA $V_{CC} \leq \left(V_I\right)$ 1.2 - 3.6 ±20 2.7 - 3.6 750 ΔI_{CC} Increase in I_{CC} per Input $V_{IH} = V_{CC} - 0.6V$ μА

AC Electrical Characteristics (Note 5)

Symbol	Parameter	Parameter Conditions	Parameter Conditions V _{CC} T _A =	$\begin{array}{c c} V_{CC} & T_A = -40^{\circ}C \text{ to } +85^{\circ}C \\ \hline (V) & Min & Max \end{array}$	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units Figure Number
			(V)		••••••		
t _{PHL}	Propagation Delay	$C_L = 30 \text{ pF}, R_L = 500\Omega$	$\textbf{3.3}\pm\textbf{0.3}$	0.6	3.0		_
t _{PLH}			2.5 ± 0.2	0.8	3.9		Figures 1, 2
			1.8 ± 0.15	1.0	7.8	ns	., _
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1	1.5 ± 0.1 1.0 1	15.6		Figures
			1.2	1.5	39		3, 4
t _{OSHL}	Output to Output Skew	$C_L = 30 \text{ pF}, R_L = 500 \Omega$	$\textbf{3.3}\pm\textbf{0.3}$		0.5		
t _{OSLH}	(Note 6)		2.5 ± 0.2		0.5		
			1.8 ± 0.15		0.75	ns	
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1		1.5		
			1.2		1.5		

Note 5: For $C_L = 50_PF$, add approximately 300 ps to the AC maximum specification.

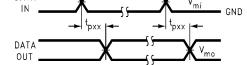
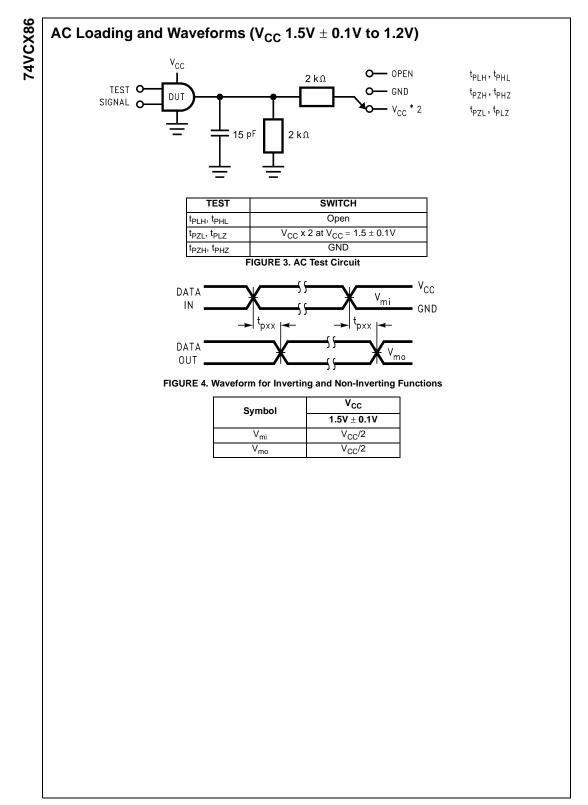
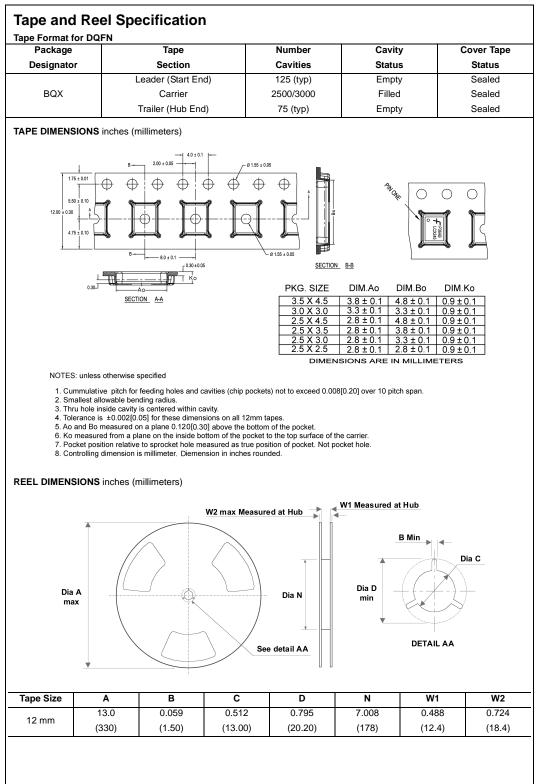

Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

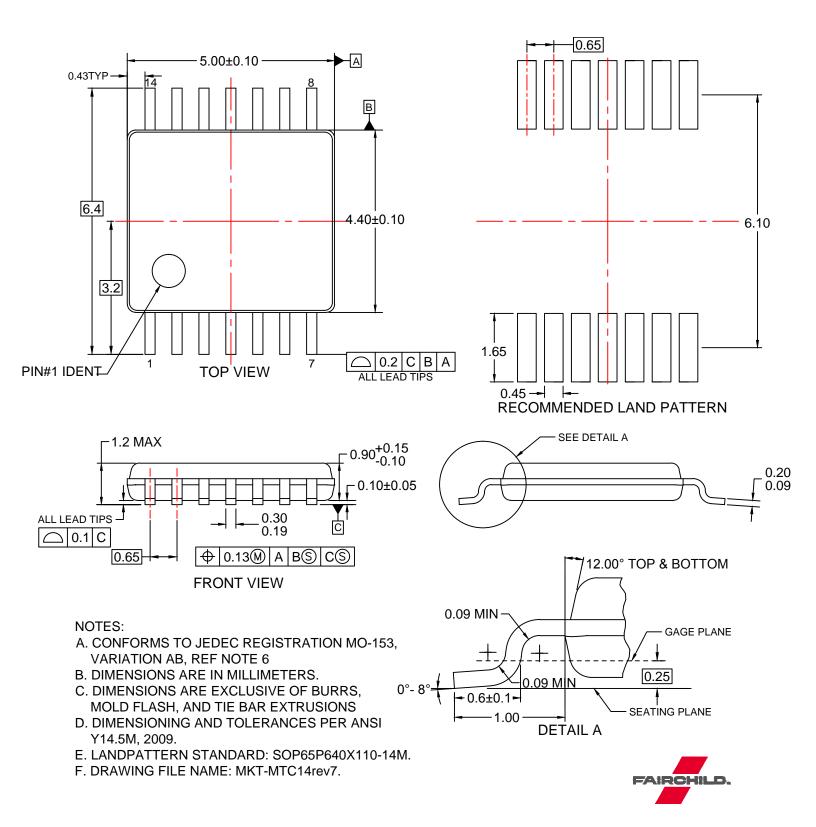
V_{CC} $T_A = +25^{\circ}C$						
Symbol	Parameter	Conditions	(V)	Typical	Units	
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_{L} = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	0.25		
			2.5	0.6	V	
			3.3	0.8		
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 30 \text{ pF}, \text{ V}_{IH} = \text{V}_{CC}, \text{ V}_{IL} = 0\text{V}$	1.8	-0.25		
			2.5	-0.6	V	
			3.3	-0.8		
V _{OHV}	Quiet Output Dynamic Valley VOH	$C_L = 30 \text{ pF}, \text{ V}_{IH} = \text{V}_{CC}, \text{ V}_{IL} = 0 \text{V}$	1.8	1.5		
			2.5	1.9	V	
			3.3	2.2		

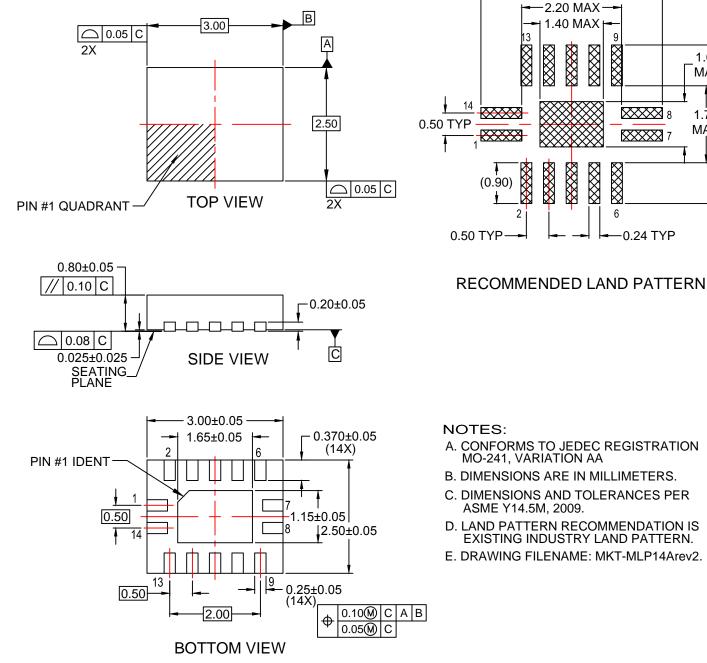
Capacitance

Symbol	Parameter	Conditions		Units
	i alameter	Conditions		
CIN	Input Capacitance	$V_{CC} = 1.8, 2.5V \text{ or } 3.3V, V_I = 0V \text{ or } V_{CC}$	6	pF
C _{OUT}	Output Capacitance	$V_I = 0V$ or V_{CC} , $V_{CC} = 1.8V$, 2.5V or 3.3V	7	pF
C _{PD}	Power Dissipation Capacitance	$V_I = 0V \text{ or } V_{CC}, f = 10 \text{ MHz}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	20	pF

AC Loading and Waveforms (V_CC 3.3V \pm 0.3V to 1.8V \pm 0.15V)


FIGURE 2. Waveform for Inverting and Non-Inverting Functions


Symbol		v _{cc}	
Cymbol	$3.3V \pm 0.3V$	$\textbf{2.5V} \pm \textbf{0.2V}$	1.8V ± 0.15V
V _{mi}	1.5V	V _{CC} /2	V _{CC} /2
V _{mo}	1.5V	V _{CC} /2	V _{CC} /2

74VCX86

4.00 MAX-

1.00

MAX

1.70

MAX

3.50 MAX

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

74HC85N NLU1G32AMUTCG NLV7SZ58DFT2G CD4068BE NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC32ADTR2G MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV74HC02ADR2G 74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 NLV74HC08ADTR2G NLV74HC14ADR2G NLV74HC20ADR2G NLX2G86MUTCG 5962-8973601DA 74LVC2G02HD4-7 NLU1G00AMUTCG 74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G00HK3-7 74LVC2G86HK3-7 NLX1G99DMUTWG NLVVHC1G00DFT2G NLVHC1G08DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ86USG NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7 NLV74HC02ADTR2G NLX1G332CMUTCG NL17SG86P5T5G NL17SZ05P5T5G