

Is Now Part of



## ON Semiconductor ${ }^{\oplus}$

## To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ( $\_$), the underscore ( $\_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
## 74VHC125

Quad Buffer with 3-STATE Outputs

## Features

- High Speed: $\mathrm{t}_{\mathrm{PD}}=3.8 \mathrm{~ns}$ (Typ.) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

■ Lower power dissipation: $\mathrm{I}_{\mathrm{CC}}=4 \mu \mathrm{~A}$ (Max.) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

- High noise immunity: $\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}$ (Min.)
- Power down protection is provided on all inputs

■ Low noise: $\mathrm{V}_{\text {OLP }}=0.8 \mathrm{~V}$ (Max.)
■ Pin and function compatible with 74 HC 125

## General Description

The VHC125 contains four independent non-inverting buffers with 3-STATE outputs. It is an advanced highspeed CMOS device fabricated with silicon gate CMOS technology and achieves the high-speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

An input protection circuit insures that 0 V to 7 V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5 V to 3 V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

## Ordering Information

| Order Number | Package <br> Number | Package Description |
| :--- | :---: | :--- |
| 74VHC125M | M14A | 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" <br> Narrow |
| 74VHC125SJ | M14D | 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide |
| 74VHC125MTC | MTC14 | 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, <br> 4.4mm Wide |

Device also available in Tape and Reel. Specify by appending suffix letter " $X$ " to the ordering number.
All packages are lead free per JEDEC: J-STD-020B standard.

## Connection Diagram



## Pin Description

| Pin Names | Description |
| :--- | :--- |
| $\overline{\mathrm{A}}_{n}, \mathrm{~B}_{\mathrm{n}}$ | Inputs |
| $\mathrm{O}_{\mathrm{n}}$ | Outputs |

Logic Symbol


Function Table

| Inputs |  | Output |
| :---: | :---: | :---: |
| $\overline{\mathbf{A}}_{\boldsymbol{n}}$ | $\mathbf{B}_{\boldsymbol{n}}$ | $\mathbf{O}_{\boldsymbol{n}}$ |
| L | L | L |
| L | H | H |
| H | X | Z |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
Z = HIGH Impedance
X = Immaterial

## Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol | Parameter | Rating |
| :---: | :--- | ---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | -0.5 V to +7.0 V |
| $\mathrm{~V}_{\text {IN }}$ | DC Input Voltage | -0.5 V to +7.0 V |
| $\mathrm{~V}_{\mathrm{OUT}}$ | DC Output Voltage | -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ |
| $\mathrm{I}_{\mathrm{IK}}$ | Input Diode Current | -20 mA |
| $\mathrm{I}_{\mathrm{OK}}$ | Output Diode Current | $\pm 20 \mathrm{~mA}$ |
| $\mathrm{I}_{\mathrm{OUT}}$ | DC Output Current | $\pm 25 \mathrm{~mA}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | DC $\mathrm{V}_{\mathrm{CC}} /$ GND Current | $\pm 50 \mathrm{~mA}$ |
| $\mathrm{~T}_{\mathrm{STG}}$ | Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Lead Temperature (Soldering, 10 seconds) | $260^{\circ} \mathrm{C}$ |

## Recommended Operating Conditions ${ }^{(1)}$

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

| Symbol | Parameter | Rating |
| :---: | :--- | ---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | 2.0 V to +5.5 V |
| $\mathrm{~V}_{\mathrm{IN}}$ | Input Voltage | 0 V to +5.5 V |
| $\mathrm{~V}_{\mathrm{OUT}}$ | Output Voltage | 0 V to $\mathrm{V}_{\mathrm{CC}}$ |
| $\mathrm{T}_{\mathrm{OPR}}$ | Operating Temperature | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | Input Rise and Fall Time, |  |
|  | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ | $0 \mathrm{~ns} / \mathrm{V} \sim 100 \mathrm{~ns} / \mathrm{V}$ |
|  | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ | $0 \mathrm{~ns} / \mathrm{V} \sim 20 \mathrm{~ns} / \mathrm{V}$ |

## Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

| Symbol | Parameter | $\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$ | Conditions |  | $\mathrm{T}_{\mathrm{A}}=$ |  |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $25^{\circ} \mathrm{C}$ |  |  | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |
|  |  |  |  |  | Min. | Typ. | Max. | Min. | Max. |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH Level Input Voltage | 2.0 |  |  | 1.50 |  |  | 1.50 |  | V |
|  |  | 3.0-5.5 |  |  | $0.7 \times \mathrm{V}_{\text {CC }}$ |  |  | $0.7 \times V_{\text {CC }}$ |  |  |
| $\mathrm{V}_{\text {IL }}$ | LOW Level Input Voltage | 2.0 |  |  |  |  | 0.50 |  | 0.50 | V |
|  |  | 3.0-5.5 |  |  |  |  | $0.3 \times \mathrm{V}_{\mathrm{CC}}$ |  | $0.3 \times \mathrm{V}_{\mathrm{CC}}$ |  |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH Level Output Voltage | 2.0 | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$ | $\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$ | 1.9 | 2.0 |  | 1.9 |  | V |
|  |  | 3.0 |  |  | 2.9 | 3.0 |  | 2.9 |  |  |
|  |  | 4.5 |  |  | 4.4 | 4.5 |  | 4.4 |  |  |
|  |  | 3.0 |  | $\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$ | 2.58 |  |  | 2.48 |  |  |
|  |  | 4.5 |  | $\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$ | 3.94 |  |  | 3.80 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | LOW Level Output Voltage | 2.0 | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$ | $\mathrm{l}_{\mathrm{OL}}=50 \mu \mathrm{~A}$ |  | 0.0 | 0.1 |  | 0.1 | V |
|  |  | 3.0 |  |  |  | 0.0 | 0.1 |  | 0.1 |  |
|  |  | 4.5 |  |  |  | 0.0 | 0.1 |  | 0.1 |  |
|  |  | 3.0 |  | $\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$ |  |  | 0.36 |  | 0.44 |  |
|  |  | 4.5 |  | $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$ |  |  | 0.36 |  | 0.44 |  |
| $\mathrm{l}_{0}$ | 3-STATE Output Off-State Current | 5.5 | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$ |  |  |  | $\pm 0.25$ |  | $\pm 2.5$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{N}}$ | Input Leakage Current | 0-5.5 | $\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND |  |  |  | $\pm 0.1$ |  | $\pm 1.0$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | Quiescent Supply Current | 5.5 | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND |  |  |  | 4.0 |  | 40.0 | $\mu \mathrm{A}$ |

Noise Characteristics

| Symbol | Parameter | $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$ | Conditions | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Typ. | Limits |  |
| $\mathrm{V}_{\text {OLP }}{ }^{(2)}$ | Quiet Output Maximum Dynamic VoL | 5.0 | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ | 0.5 | 0.8 | V |
| $\mathrm{V}_{\text {OLV }}{ }^{(2)}$ | Quiet Output Minimum Dynamic $\mathrm{V}_{\mathrm{OL}}$ | 5.0 | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ | -0.5 | -0.8 | V |
| $\mathrm{V}_{\mathrm{HH}}{ }^{(2)}$ | Minimum HIGH Level Dynamic Input Voltage | 5.0 | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  | 3.5 | V |
| $\mathrm{V}_{\text {LD }}{ }^{(2)}$ | Maximum HIGH Level Dynamic Input Voltage | 5.0 | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  | 1.5 | V |

## Note:

2. Parameter guaranteed by design.

AC Electrical Characteristics

| Symbol | Parameter | $\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$ | Conditions |  | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$ |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Min. | Typ. | Max. | Min. | Max. |  |
| $t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$ | Propagation Delay Time | $3.3 \pm 0.3$ |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | 5.6 | 8.0 | 1.0 | 9.5 | ns |
|  |  |  |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  | 8.1 | 11.5 | 1.0 | 13.0 |  |
|  |  | $5.0 \pm 0.5$ |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | 3.8 | 5.5 | 1.0 | 6.5 | ns |
|  |  |  |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  | 5.3 | 7.5 | 1.0 | 8.5 |  |
| $\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$ | 3-STATE Output Enable Time | $3.3 \pm 0.3$ | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | 5.4 | 8.0 | 1.0 | 9.5 | ns |
|  |  |  |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  | 7.9 | 11.5 | 1.0 | 13.0 |  |
|  |  | $5.0 \pm 0.5$ |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | 3.6 | 5.1 | 1.0 | 6.0 | ns |
|  |  |  |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  | 5.1 | 7.1 | 1.0 | 8.0 |  |
| $\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PHZ }}$ | 3-STATE Output Disable Time | $3.3 \pm 0.3$ | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  | 9.5 | 13.2 | 1.0 | 15.0 | ns |
|  |  | $5.0 \pm 0.5$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  | 6.1 | 8.8 | 1.0 | 10.0 |  |
| $\mathrm{t}_{\text {OSLH }}, \mathrm{t}_{\text {OSHL }}$ | Output to Output Skew | $3.3 \pm 0.3$ | (3) | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  | 1.5 |  | 1.5 | ns |
|  |  | $5.0 \pm 0.5$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  | 1.0 |  | 1.0 |  |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance |  | $\mathrm{V}_{\mathrm{CC}}=$ Open |  |  | 4 | 10 |  | 10 | pF |
| Cout | Output Capacitance |  | $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ |  |  | 6 |  |  |  | pF |
| $\mathrm{C}_{\text {PD }}$ | Power Dissipation Capacitance |  | (4) |  |  | 14 |  |  |  | pF |

## Notes:

3. Parameter guaranteed by design. $\mathrm{t}_{\mathrm{OLLH}}=\left|\mathrm{t}_{\text {PLHmax }}-\mathrm{t}_{\text {PLHmin }}\right| ; \mathrm{t}_{\mathrm{OSHL}}=\left|\mathrm{t}_{\text {PHLmax }}-\mathrm{t}_{\text {PHLmin }}\right|$.
4. $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation:
$\mathrm{I}_{\mathrm{CC}}($ Opr. $)=\mathrm{C}_{\mathrm{PD}} \cdot \mathrm{V}_{\mathrm{CC}} \cdot \mathrm{f}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{CC}} / 4$ (per bit).


## NOTES:

A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
D. DIMENSIONING AND TOLERANCES PER ANSI Y14.5M, 2009.

E. LANDPATTERN STANDARD: SOP65P640X110-14M.
F. DRAWING FILE NAME: MKT-MTC14rev7.



#### Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.


## PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:
Other Similar products are found below :
1.5SMC82AT3G 74LCX574WM FST3126MX MC78L08ACP MMBTA42 FDD8424H_F085A NTZD3154NT1H KSA1015GRTA BAT42XV2 007851X 702607H MC33079DG MC34072DR2G MC34151P MC78L08ACDG 74VHC14MX 74VHC541MTCX FAN3111ESX FDMC86262P FDMD8530 FEBFL7733A_L53U021A FEBFOD8333 MM74HC138MX MMBZ5233B FOD3120SD FPAB30BH60B FQP2N80 1.5KE16AG MT9V115EBKSTCH-GEVB NB6L295MNGEVB NB7L1008MNGEVB NC7WZ126K8X NCL30000LED2GEVB NCN9252MUGEVB NCP1075PSRGEVB NCV4274CDT33RKG NCV887100D1R2G NDT2955 1N5339B NSIC2030JBT3G NV890231MWTXGEVB CAT4101AEVB KA7818ETU S3JB 2SC5569-TD-E FEBFL7734_L55L008A 1V5KE39CA FNB33060T AMIS30422DBGEVB AMIS3062XGEVK


[^0]:    
    
    
    
    
    
    
    
    
     is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

