

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
74VHC175
 Quad D－Type Flip－Flop

Features

－High Speed： $\mathrm{f}_{\mathrm{MAX}}=210 \mathrm{MHz}$（Typ．）at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
■ Low power dissipation： $\mathrm{I}_{\mathrm{CC}}=4 \mu \mathrm{~A}$（Max．）at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
■ High noise immunity： $\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}$（Min．）
■ Power down protection is provided on all inputs
■ Low noise： $\mathrm{V}_{\mathrm{OLP}}=0.8 \mathrm{~V}$（Max．）
■ Pin and function compatible with 74 HC 175

General Description

The VHC175 is an advanced high－speed CMOS device fabricated with silicon gate CMOS technology．It achieves the high－speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation．

The VHC175 is a high－speed quad D－type flip－flop．The device is useful for general flip－flop requirements where clock and clear inputs are common．The information on the D inputs is stored during the LOW－to－HIGH clock transition．Both true and complemented outputs of each flip－flop are provided．A Master Reset input resets all flip－ flops，independent of the Clock or D inputs，when LOW．

An input protection circuit insures that 0 V to 7 V can be applied to the input pins without regard to the supply voltage．This device can be used to interface 5 V to 3 V systems and two supply systems such as battery backup．This circuit prevents device destruction due to mismatched supply and input voltages．

Ordering Information

Order Number	Package Number	\quad Package Description
74VHC175M	M16A	16－Lead Small Outline Integrated Circuit（SOIC），JEDEC MS－012，0．150＂Narrow
74VHC175SJ	M16D	16－Lead Small Outline Package（SOP），EIAJ TYPE II，5．3mm Wide
74VHC175MTC	MTC16	16－Lead Thin Shrink Small Outline Package（TSSOP），JEDEC MO－153，4．4mm Wide

Surface mount packages are also available on Tape and Reel．Specify by appending the suffix letter＂ X ＂to the ordering number．

Connection Diagram

Pin Description

Pin Names	Description
$D_{0}-D_{3}$	Data Inputs
$C P$	Clock Pulse Input
$M R$	Master Reset Input
$Q_{0}-Q_{3}$	True Outputs
$\bar{Q}_{0}-\bar{Q}_{3}$	Complement Outputs

Logic Symbol

IEEE／IEC

Functional Description

The VHC175 consists of four edge－triggered D flip－flops with individual D inputs and Q and \bar{Q} outputs．The Clock and Master Reset are common．The four flip－flops will store the state of their individual D inputs on the LOW－to－ HIGH clock（CP）transition，causing individual Q and \bar{Q} outputs to follow．A LOW input on the Master Reset（ $\overline{\mathrm{MR}})$ will force all Q outputs LOW and \bar{Q} outputs HIGH inde－ pendent of Clock or Data inputs．The VHC175 is useful for general logic applications where a common Master Reset and Clock are acceptable．

Truth Table

Inputs＠ $\mathbf{t}_{\mathbf{n}}$, $\overline{\mathbf{M R}=\mathbf{H}}$	Outputs＠ $\mathbf{t}_{\mathrm{n}+\mathbf{1}}$	
D_{n}	$\mathbf{Q}_{\mathbf{n}}$	$\overline{\mathbf{Q}}_{\mathbf{n}}$
L	L	H
H	H	L

H＝HIGH Voltage Level
L＝LOW Voltage Level
$t_{n}=$ Bit Time before Clock Pulse
$t_{n+1}=$ Bit Time after Clock Pulse

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays．

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	-0.5 V to +7.0 V
$\mathrm{~V}_{\text {IN }}$	DC Input Voltage	-0.5 V to +7.0 V
$\mathrm{~V}_{\mathrm{OUT}}$	DC Output Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
I_{IK}	Input Diode Current	-20 mA
I_{OK}	Output Diode Current	$\pm 20 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{OUT}}$	DC Output Current	$\pm 25 \mathrm{~mA}$
I_{CC}	DC $\mathrm{V}_{\mathrm{CC}} /$ GND Current	$\pm 50 \mathrm{~mA}$
$\mathrm{~T}_{\mathrm{STG}}$	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$

Recommended Operating Conditions ${ }^{(1)}$

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	2.0 V to +5.5 V
$\mathrm{~V}_{\text {IN }}$	Input Voltage	0 V to +5.5 V
$\mathrm{~V}_{\mathrm{OUT}}$	Output Voltage	0 V to V_{CC}
$\mathrm{T}_{\mathrm{OPR}}$	Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time,	
	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$0 \mathrm{~ns} / \mathrm{V} \sim 100 \mathrm{~ns} / \mathrm{V}$
	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	$0 \mathrm{~ns} / \mathrm{V} \sim 20 \mathrm{~ns} / \mathrm{V}$

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{aligned} \mathrm{T}_{\mathrm{A}}= & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$		Units
					Min.	Typ.	Max.	Min.	Max.	
V_{IH}	HIGH Level Input Voltage	2.0			1.50			1.50		V
		3.0-5.5			$0.7 \times \mathrm{V}_{\mathrm{CC}}$			$0.7 \times V_{\text {CC }}$		
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	2.0					0.50		0.50	V
		3.0-5.5					$0.3 \times \mathrm{V}_{\mathrm{CC}}$		$0.3 \times \mathrm{V}_{\mathrm{CC}}$	
V_{OH}	HIGH Level Output Voltage	2.0	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$	1.9	2.0		1.9		V
		3.0			2.9	3.0		2.9		
		4.5			4.4	4.5		4.4		
		3.0		$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	2.58			2.48		
		4.5		$\mathrm{IOH}=-8 \mathrm{~mA}$	3.94			3.80		
V_{OL}	LOW Level Output Voltage	2.0	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=50 \mu \mathrm{~A}$		0.0	0.1		0.1	V
		3.0				0.0	0.1		0.1	
		4.5				0.0	0.1		0.1	
		3.0		$\mathrm{I}_{\text {OL }}=4 \mathrm{~mA}$			0.36		0.44	
		4.5		$\mathrm{I}_{\text {OL }}=8 \mathrm{~mA}$			0.36		0.44	
I_{N}	Input Leakage Current	0-5.5	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND				± 0.1		± 1.0	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	5.5	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}$				4.0		40.0	$\mu \mathrm{A}$

Noise Characteristics

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		Units	Conditions
			Typ.	Limits		
$\mathrm{V}_{\text {OLP }}{ }^{(2)}$	Quiet Output Maximum Dynamic V_{OL}	5.0	0.4	0.8	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\mathrm{V}_{\text {olv }}{ }^{(2)}$	Quiet Output Minimum Dynamic V_{OL}	5.0	-0.4	-0.8	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\mathrm{V}_{\mathrm{HD}}{ }^{(2)}$	Minimum HIGH Level Dynamic Input Voltage	5.0		3.5	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\mathrm{V}_{\text {LD }}{ }^{(2)}$	Maximum LOW Level Dynamic Input Voltage	5.0		1.5	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Note:

2. Parameter guaranteed by design.

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		Units
				Min.	Typ.	Max.	Min.	Max.	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	3.3 ± 0.3	$C_{L}=15 \mathrm{pF}$	90	140		75		MHz
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	50	75		45		
		5.0 ± 0.5	$C_{L}=15 \mathrm{pF}$	150	210		125		MHz
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	85	115		75		
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation Delay Time, (CP to Q_{n} or \bar{Q}_{n})	3.3 ± 0.3	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		7.5	11.5	1.0	13.5	ns
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		10.0	15.0	1.0	17.0	
		5.0 ± 0.5	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		4.8	7.3	1.0	8.5	ns
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		6.3	9.3	1.0	10.5	
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation Delay Time, ($\overline{M R}$ to Q_{n} or \bar{Q}_{n})	3.3 ± 0.3	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		6.3	10.1	1.0	12.0	ns
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		8.8	13.6	1.0	15.5	
		5.0 ± 0.5	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		4.3	6.4	1.0	7.5	ns
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		5.8	8.4	1.0	9.5	
$\mathrm{t}_{\text {OSLH }}, \mathrm{t}_{\text {OSHL }}$	Output to Output Skew	3.3 ± 0.3	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			1.5		1.5	
		5.0 ± 0.5	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}{ }^{(3)}$			1.0		1.0	
$\mathrm{C}_{\text {IN }}$	Input Capacitance		$\mathrm{V}_{\mathrm{CC}}=$ Open		4	10		10	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance		(4)		44				pF

Notes:

3. Parameter guaranteed by design. $\mathrm{t}_{\mathrm{OSLH}}=\left|\mathrm{t}_{\text {PLHmax }}-\mathrm{t}_{\text {PLHmin }}\right| ; \mathrm{t}_{\mathrm{OSHL}}=\left|\mathrm{t}_{\text {PHLmax }}-\mathrm{t}_{\text {PHLmin }}\right|$.
4. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained from the equation:
$I_{C C}$ (opr.) $=\mathrm{C}_{P D} \cdot \mathrm{~V}_{\mathrm{CC}} \cdot \mathrm{f}_{I N}+\mathrm{I}_{\mathrm{CC}} / 4$ (per F/F), and the total C_{PD} when n pcs of the Flip-Flop operate can be calculated by the following equation: $\mathrm{C}_{\mathrm{PD}}($ total $)=30+14 \cdot \mathrm{n}$

AC Operating Requirements

Symbol	Parameter	$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})^{(5)}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units
			Typ.	Guaranteed Minimum		
$\mathrm{t}_{\mathrm{w}}(\mathrm{L}), \mathrm{t}_{\mathrm{w}}(\mathrm{H})$	Minimum Pulse Width (CP)	3.3		5.0	5.0	ns
		5.0		5.0	5.0	
$t_{W}(\mathrm{~L})$	Minimum Pulse Width ($\overline{\mathrm{MR}}$)	3.3		5.0	5.0	ns
		5.0		5.0	5.0	
t_{s}	Minimum Setup Time (Dn to CP)	3.3		5.0	5.0	ns
		5.0		4.0	4.0	
t_{H}	Minimum Hold Time (Dn to CP)	3.3		1.0	1.0	ns
		5.0		1.0	1.0	
$\mathrm{t}_{\text {REC }}$	Minimum Removal Time ($\overline{\mathrm{MR}}$)	3.3		5.0	5.0	ns
		5.0		5.0	5.0	

Note:

5. V_{CC} is $3.3 \pm 0.3 \mathrm{~V}$ or $5.0 \pm 0.5 \mathrm{~V}$

Physical Dimensions

Dimensions are in millimeters unless otherwise noted.

LAND PATTERN RECOMMENDATION

NOTES: UNLESS OTHERWISE SPECIFIED
A) THIS PACKAGE CONFORMS TO JEDEC MS-012, VARIATION AC, ISSUE C, DATED MAY 1990
B) ALL DIMENSIONS ARE IN MILLIMETERS
C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS.
D) STANDARD LEAD FINISH:

200 MICROINCHES / 5.08 MICRONS MIN. LEAD/TIN (SOLDER) ON COPPER.
$\frac{\text { DETAIL A }}{\text { SCALE: } 2: 1}$
M16AREVK

Figure 1. 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

Physical Dimensions (Continued)
Dimensions are in millimeters unless otherwise noted.

LAND PATTERN RECOMMENDATION

ALL LEAD TIPS

DIMENSIONS ARE IN MILLIMETERS

NOTES:
A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLSHED IN DECEMBER, 1998.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

DETAIL A
M16DREVC

Figure 2. 16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M16D

Physical Dimensions (Continued)

Dimensions are in millimeters unless otherwise noted.

MTC16rev4

Figure 3. 16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEX ${ }^{\otimes}$
Across the board. Around the world. ${ }^{\text {TM }}$
ActiveArray ${ }^{\text {™ }}$
Bottomless ${ }^{\text {TM }}$
Build it Now ${ }^{\text {TM }}$
CoolFET ${ }^{\text {TM }}$
CROSSVOLTTM
CTLTM
Current Transfer Logic ${ }^{\text {TM }}$
DOME ${ }^{\text {TM }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {TM }}$
EcoSPARK ${ }^{\circledR}$
EnSigna ${ }^{\text {TM }}$
FACT Quiet Series ${ }^{\text {TM }}$
FACT ${ }^{\text {® }}$
FAST ${ }^{\text {® }}$
FASTr ${ }^{\text {TM }}$
FPS ${ }^{\text {™ }}$
FRFET ${ }^{\circledR}$
GlobalOptoisolator ${ }^{\text {TM }}$
GTO ${ }^{\text {™ }}$
$\mathrm{HiSeC}^{\text {™ }}$

Power-SPM ${ }^{\text {TM }}$	TinyBoost ${ }^{\text {TM }}$
PowerTrench ${ }^{\text {® }}$	TinyBuck ${ }^{\text {TM }}$
Programmable Active Droop ${ }^{\text {™ }}$	TinyLogic ${ }^{\text {® }}$
QFET ${ }^{\text {® }}$	TINYOPTO'M
QS ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
QT Optoelectronics ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
Quiet Series ${ }^{\text {TM }}$	TruTranslation ${ }^{\text {TM }}$
RapidConfigure ${ }^{\text {TM }}$	μ SerDes ${ }^{\text {™ }}$
RapidConnect ${ }^{\text {TM }}$	UHC ${ }^{\text {® }}$
ScalarPump ${ }^{\text {TM }}$	UniFET ${ }^{\text {TM }}$
SMART START ${ }^{\text {TM }}$	VCX ${ }^{\text {™ }}$
SPM ${ }^{\text {® }}$	Wire ${ }^{\text {TM }}$
STEALTH ${ }^{\text {TM }}$	
SuperFET ${ }^{\text {TM }}$	
SuperSOT ${ }^{\text {TM }} 3$	
SuperSOT ${ }^{\text {TM }}$-6	
SuperSOT ${ }^{\text {TM }}$ -	
SyncFET ${ }^{\text {TM }}$	
TCM ${ }^{\text {™ }}$	
The Power Franchise ${ }^{\text {® }}$	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip-Flops category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLV14027BDG NLX1G74MUTCG 703557B 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA NTE4598B 74LVC74APW-Q100J 74LCX16374MTDX 74LVT74D, 118 74VHCT9273FT(BJ) MM74HC374WM 74LVX74MTCX CD40174BF3A HMC723LC3CTR 5962-8681501RA MM74HCT273WM SN74LVC74APW SN74LVC74AD SN74HC273DWR MC74HC11ADG M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74VHCV374FT(BJ) 74VHCV574FT(BJ) SNJ54ALS574BJ SN74LVC74ADR SN74HC574PWR SN74HC374AN SN74AS574DWR SN74ALS175NSR SN74HC175D SN74AC74D 74AHC1G79GV. 125 74AHC74D. 112 74HC112D.652 74HC574D.652 74HCT173D.652 74HCT374D.652 74AHC574D. 118 74AHCT1G79GW. 125 74HC273D.652 74HC74D.653 74HC107D.652 74HC574D.653 74HCT273D. 652

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

