ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]ON Semiconductor ${ }^{*}$

74VHC74

Dual D-Type Flip-Flop with Preset and Clear

Features

- High Speed: $\mathrm{f}_{\mathrm{MAX}}=170 \mathrm{MHz}$ (typ.) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High noise immunity: $\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}$ (min.)
- Power down protection is provided on all inputs
- Low power dissipation: $\mathrm{I}_{\mathrm{CC}}=2 \mu \mathrm{~A}$ (max.) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

■ Pin and function compatible with 74 HC 74

General Description

The VHC74 is an advanced high speed CMOS Dual D-Type Flip-Flop fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. The signal level applied to the D input is transferred to the Q output during the positive going transition of the CK pulse. $\overline{\mathrm{CLR}}$ and $\overline{\mathrm{PR}}$ are independent of the CK and are accomplished by setting the appropriate input LOW.

An input protection circuit ensures that 0 V to 7 V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5 V to 3 V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

Ordering Information

Order Number	Package Number	Package Description
$74 \mathrm{VHC74M}$	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
$74 \mathrm{VHC74SJ}$	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
$74 \mathrm{VHC74MTC}$	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, $4.4 m m ~ W i d e ~$
74VHC74N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter " X " to the ordering number.
All packages are lead free per JEDEC: J-STD-020B standard.

Connection Diagram

Pin Description

Pin Names	Description
$\mathrm{D}_{1}, \mathrm{D}_{2}$	Data Inputs
$\mathrm{CK}_{1}, \mathrm{CK}_{2}$	Clock Pulse Inputs
$\overline{C L R}_{1}, \overline{\mathrm{CLR}}_{2}$	Direct Clear Inputs
$\overline{\mathrm{PR}}_{1}, \overline{\mathrm{PR}}_{2}$	Direct Preset Inputs
$\mathrm{Q}_{1}, \overline{\mathrm{Q}}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{2}$	Output

Logic Symbol
IEEE/IEC

Truth Table

Inputs				Outputs		Function
$\overline{C L R}$	$\overline{\text { PR }}$	D	CK	Q	$\overline{\mathbf{Q}}$	
L	H	X	X	L	H	Clear
H	L	X	X	H	L	Preset
L	L	X	X	$\mathrm{H}^{(1)}$	$\mathrm{H}^{(1)}$	
H	H	L	Ω	L	H	
H	H	H	Ω	H	L	
H	H	X	乙	Q_{n}	\bar{Q}_{n}	No Change

Note:

1. This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (HIGH) state.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	-0.5 V to +7.0 V
$\mathrm{~V}_{\mathrm{IN}}$	DC Input Voltage	-0.5 V to +7.0 V
$\mathrm{~V}_{\mathrm{OUT}}$	DC Output Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
I_{IK}	Input Diode Current	-20 mA
$\mathrm{I}_{\text {OK }}$	Output Diode Current	$\pm 20 \mathrm{~mA}$
$\mathrm{I}_{\text {OUT }}$	DC Output Current	$\pm 25 \mathrm{~mA}$
I_{CC}	DC $\mathrm{V}_{\mathrm{CC}} /$ GND Current	$\pm 50 \mathrm{~mA}$
$\mathrm{~T}_{\text {STG }}$	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$

Recommended Operating Conditions ${ }^{(2)}$

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	2.0 V to +5.5 V
$\mathrm{~V}_{\mathrm{IN}}$	Input Voltage	0 V to +5.5 V
$\mathrm{~V}_{\mathrm{OUT}}$	Output Voltage	0 V to V_{CC}
$\mathrm{T}_{\mathrm{OPR}}$	Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time,	
	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$0 \mathrm{~ns} / \mathrm{V} \sim 100 \mathrm{~ns} / \mathrm{V}$
	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	$0 \mathrm{~ns} / \mathrm{V} \sim 20 \mathrm{~ns} / \mathrm{V}$

Note:

2. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{cc} (V)	Conditions		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{aligned} \mathrm{T}_{\mathrm{A}}= & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$		Units
					Min.	Typ.	Max.	Min.	Max.	
V_{IH}	HIGH Level Input Voltage	2.0			1.50			1.50		V
		3.0-5.5			$0.7 \times \mathrm{V}_{\text {CC }}$			$0.7 \times \mathrm{V}_{\text {CC }}$		
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	2.0					0.50		0.50	V
		3.0-5.5					$0.3 \times V_{\text {CC }}$		$0.3 \times \mathrm{V}_{\mathrm{CC}}$	
V_{OH}	HIGH Level Output Voltage	2.0	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$	1.9	2.0		1.9		V
		3.0			2.9	3.0		2.9		
		4.5			4.4	4.5		4.4		
		3.0		$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	2.58			2.48		
		4.5		$\mathrm{IOH}=-8 \mathrm{~mA}$	3.94			3.80		
V_{OL}	LOW Level Output Voltage	2.0	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A}$		0.0	0.1		0.1	V
		3.0				0.0	0.1		0.1	
		4.5				0.0	0.1		0.1	
		3.0		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$			0.36		0.44	
		4.5		$\mathrm{I}_{\mathrm{LL}}=8 \mathrm{~mA}$			0.36		0.44	
I_{N}	Input Leakage Current	0-5.5	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND				± 0.1		± 1.0	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	5.5	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}$				2.0		20.0	$\mu \mathrm{A}$

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		Units
				Min.	Typ.	Max.	Min.	Max.	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	3.3 ± 0.3	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	80	125		70		MHz
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	50	75		45		
		5.0 ± 0.5	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	130	170		110		
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	90	115		75		
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\text {PHL }}$	Propagation Delay Time (CK-Q, \bar{Q})	3.3 ± 0.3	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		6.7	11.9	1.0	14.0	ns
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		9.2	15.4	1.0	17.5	
		5.0 ± 0.5	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		4.6	7.3	1.0	8.5	
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		6.1	9.3	1.0	10.5	
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation Delay Time ($\overline{C L R}, \overline{P R}-Q, \bar{Q})$	3.3 ± 0.3	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		7.6	12.3	1.0	14.5	ns
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		10.1	15.8	1.0	18.0	
		5.0 ± 0.5	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		4.8	7.7	1.0	9.0	
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		6.3	9.7	1.0	11.0	
$\mathrm{C}_{\text {IN }}$	Input Capacitance		$\mathrm{V}_{\mathrm{CC}}=$ Open		4	10		10	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance		(3)		25				pF

Note:

3. $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained from the equation: $\mathrm{I}_{\mathrm{CC}}($ opr. $)=\mathrm{C}_{\mathrm{PD}} \cdot \mathrm{V}_{\mathrm{CC}} \cdot \mathrm{f}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{CC}} / 2$ (per $\left.\mathrm{F} / \mathrm{F}\right)$.

AC Operating Requirements

Symbol	Parameter	$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})^{(4)}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	Units
			Typ.	Guaranteed Minimum		
$t_{W}(\mathrm{~L}), \mathrm{t}_{\mathrm{W}}(\mathrm{H})$	Minimum Pulse Width (CK)	3.3		6.0	7.0	ns
		5.0		5.0	5.0	
$t_{W}(\mathrm{~L})$	Minimum Pulse Width ($\overline{\mathrm{CLR}}, \overline{\mathrm{PR}})$	3.3		6.0	7.0	ns
		5.0		5.0	5.0	
t_{s}	Minimum Setup Time	3.3		6.0	7.0	ns
		5.0		5.0	5.0	
t_{H}	Minimum Hold Time	3.3		0.5	0.5	ns
		5.0		0.5	0.5	
$\mathrm{t}_{\text {REC }}$	Minimum Recovery Time ($\overline{\mathrm{CLR}}, \overline{\mathrm{PR}})$	3.3		5.0	5.0	ns
		5.0		3.0	3.0	

Note:

4. V_{CC} is $3.3 \pm 0.3 \mathrm{~V}$ or $5.0 \pm 0.5 \mathrm{~V}$

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip-Flops category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLV14027BDG NLX1G74MUTCG 703557B 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA NTE4598B 74LVC74APW-Q100J 74LCX16374MTDX 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74LVX74MTCX CD40174BF3A HMC723LC3CTR MM74HCT574MTCX 5962-8681501RA MM74HCT273WM SN74LVC74APW SN74LVC74AD SN74HC273DWR MC74HC11ADG M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74VHCV374FT(BJ) 74VHCV574FT(BJ) SNJ54ALS574BJ SN74LVC74ADR SN74HC574PWR SN74HC374AN SN74AS574DWR SN74ALS175NSR SN74HC175D SN74AC74D 74AHC1G79GV. 125 74AHC74D. 112 74HC112D.652 74HC574D.652 74HCT173D.652 74HCT374D. 652 74AHC574D. 118 74AHCT1G79GW. 125 74HC273D.652 74HC74D.653 74HC107D.652 74HC574D.653

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

