

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

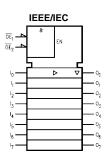
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

FAIRCHILD SEMICONDUCTOR

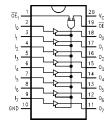
74VHCT541A **Octal Buffer/Line Driver with 3-STATE Outputs**

General Description

Features


- High Speed: t_{PD} = 5.5 ns (typ) at V_{CC} = 5V
- \blacksquare Low power dissipation: I_{CC} = 4 μA (max) at T_A = 25 $^{\circ}C$
- Power down protection is provided on all inputs and outputs
- Pin and function compatible with 74HCT541

Ordering Code:


74VHCT: Octal Bu	јстов [®] 541А	Driver with	Revised April 2005 3-STATE Outputs					
fabricated with sili the high-speed of Schottky TTL while pation. The VHCT541A is employed as mer and bus oriented t This device is sim providing flow-thro from outputs). This especially useful	escription an advanced high-s congate CMOS tecl operation similar to a maintaining the CM an octal buffer/line d nory and address d ransmitter/receivers. hilar in function to th ugh architecture (inp s pinout arrangemen as an output port for yout and greater PC	nology. It achieves equivalent Bipolar OS low power dissi- river designed to be rivers, clock drivers e VHCT244A while uts on opposite side t makes this device or microprocessors,	Protection circuits ensure that 0V to 7V can be applied to the input and output (Note 1) pins without regard to the supply voltage. This device can be used to interface 3V to 5V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mis- matched supply and input voltages. Note 1: Outputs in OFF-state. Features ■ High Speed: $t_{PD} = 5.5 \text{ ns}$ (typ) at $V_{CC} = 5V$ ■ Low power dissipation: $I_{CC} = 4 \mu A$ (max) at $T_A = 25^{\circ}C$ ■ Power down protection is provided on all inputs and outputs ■ Pin and function compatible with 74HCT541					
Ordering C	ode:							
Order Number	Package Number		Package Description					
74VHCT541AM	M20B	20-Lead Small Outline	-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide					
74VHCT541ASJ	M20D	Pb-Free 20-Lead Sm	all Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide					
	MTC20	20 Load Thin Shrink	0-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide					
74VHCT541AMTC	M1C20	20-Leau Thirt Shirink	Sinal Outline Fackage (10001), JEDEC MO-100, 4.4mm Mue					

Pb-Free package per JEDEC J-STD-020B.

Logic Symbol

Connection Diagram

Truth Table

		Outputs				
	OE ₁	OE ₂	I			
	L	L	Н	Н		
	Н	Х	Х	Z		
	Х	н	Х	Z		
	L	L	L	L		
H = HIGH \ K = Immate	/oltage Level rial		OW Voltage igh Impedar			

Pin Descriptions

Pin Names	Description
$\overline{OE}_1, \overline{OE}_2$	3-STATE Output Enable Inputs
I ₀ - I ₇	Inputs
O ₀ - O ₇	3-STATE Outputs

Absolute Maximum Ratings(Note 2)

Supply Voltage (V	(cc)	-0.5V to +7.0V
DC Input Voltage	(V _{IN})	-0.5V to +7.0V
DC Output Voltag	e (V _{OUT})	
(Note 3)		-0.5V to 7.0V
(Note 4)		-0.5V to V _{CC} + 0.5V
Input Diode Curre	ent (I _{IK})	–20 mA
Output Diode Cur	rent (I _{OK})	
(Note 5)		±20 mA
DC Output Currer	nt (I _{OUT})	±25 mA
DC V _{CC} /GND Cu	rrent (I _{CC})	±75 mA
Storage Tempera	ture (T _{STG})	−65°C to +150°C
Lead Temperature	e (T _L)	
(Soldering, 10	seconds)	260°C

Recommended Operating Conditions (Note 6)

Supply Voltage (V _{CC})	4.5V to +5.5V
Input Voltage (V _{IN})	0V to +5.5V
Output Voltage (V _{OUT})	
(Note 4)	0V to V _{CC}
(Note 3)	0V to 5.5V
Operating Temperature (T _{OPR})	-40°C to +85°C
Input Rise and Fall Time (t_r, t_f)	
$V_{CC} = 5.0V \pm 0.5V$	0 ~ 20 ns/V

Note 2: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifications.

Note 3: When Outputs are in OFF-State OR when $V_{\mbox{CC}}$ = 0V.

Note 4: HIGH or LOW state \mathbf{I}_{OUT} absolute maximum rating must be observed.

Note 5: $V_{OUT} <\!\! \text{GND}, \! V_{OUT} > V_{CC}$ (Outputs Active).

Note 6: Unused inputs must be held HIGH or LOW. They may not float.

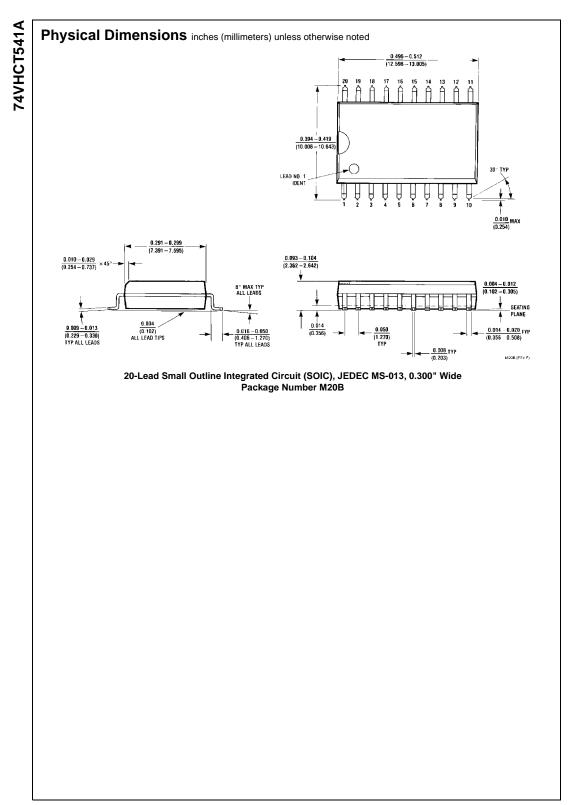
DC Electrical Characteristics

Symbol	Parameter	V _{CC}		$T_A = 25^\circ C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	
V _{IH}	HIGH Level Input Voltage	4.5 - 5.5	2.0			2.0		V		
VIL	LOW Level Input Voltage	4.5 - 5.5			0.8		0.8	V		
V _{OH}	HIGH Level Output Voltage	4.5	4.4	4.5		4.4		V	$V_{IN} = V_{IH}$	$I_{OH} = -50 \ \mu A$
		4.5	3.94			3.80		V		$I_{OH} = -8 \text{ mA}$
V _{OL}	LOW Level Output Voltage	4.5		0.0	0.1		0.1	V	$V_{IN} = V_{IL}$	$I_{OL}=+50~\mu A$
		4.5			0.36		0.44	V		$I_{OL} = +8 \text{ mA}$
I _{OZ}	3-STATE Output	5.5			±0.25		±2.5	μA	$V_{IN} = V_{IH} \text{ or } V_{IL}$	
	Off-State Current								$V_{OUT} = V_{CC}$ or GND	
I _{IN}	Input Leakage Current	0 - 5.5			±0.1		±1.0	μA	V _{IN} = 5.5V or GND	
I _{CC}	Quiescent Supply Current	5.5			4.0		40.0	μA	V _{IN} = V _{CC} or GND	
ICCT	Maximum I _{CC} /Input	5.5			1.35		1.50	mA	$V_{IN} = 3.4V$ Other Inputs = V_{CC} or GN	
I _{OFF}	Output Leakage Current	0			0.5		5.0	μA	V _{OUT} = 5.5	V

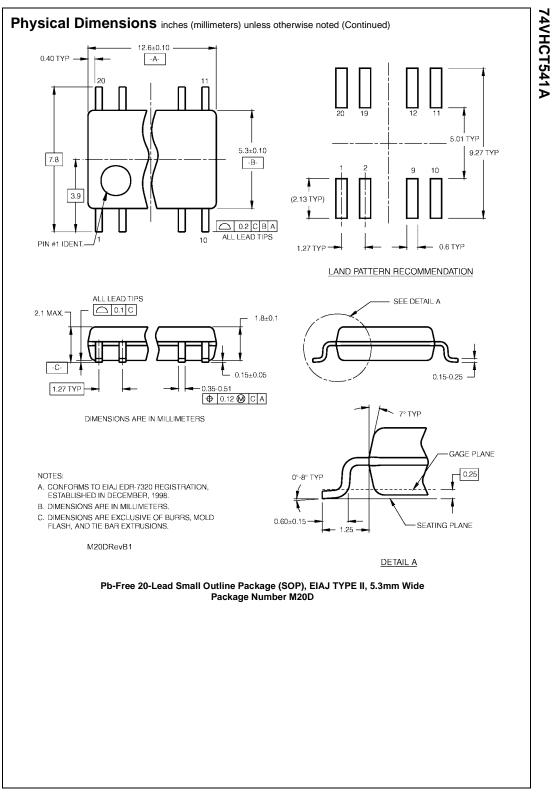
Noise Characteristics

Symbol	Parameter	V _{CC}	T _A =	25°C	Units	Conditions	
Symbol	Faranieter	(V)	Тур	Limits	Units	conditions	
V _{OLP} (Note 7)	Quiet Output Maximum Dynamic V _{OL}	5.0	1.2	1.6	V	$C_L = 50 \text{ pF}$	
V _{OLV} (Note 7)	Quiet Output Minimum Dynamic V _{OL}	5.0	-1.2	-1.6	V	$C_L = 50 \text{ pF}$	
V _{IHD} (Note 7)	Minimum HIGH Level Dynamic Input Voltage	5.0		2.0	V	$C_L = 50 \text{ pF}$	
V _{ILD} (Note 7)	Maximum HIGH Level Dynamic Input Voltage	5.0		0.8	V	$C_L = 50 \text{ pF}$	

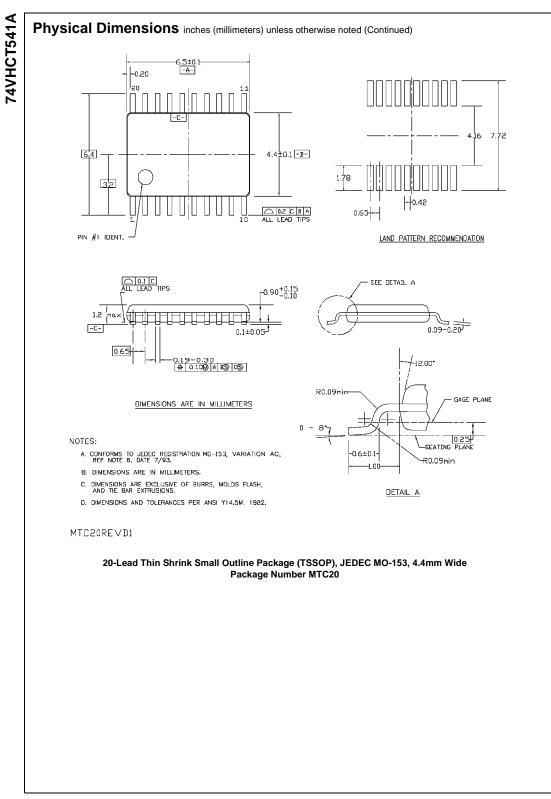
Note 7: Parameter guaranteed by design.

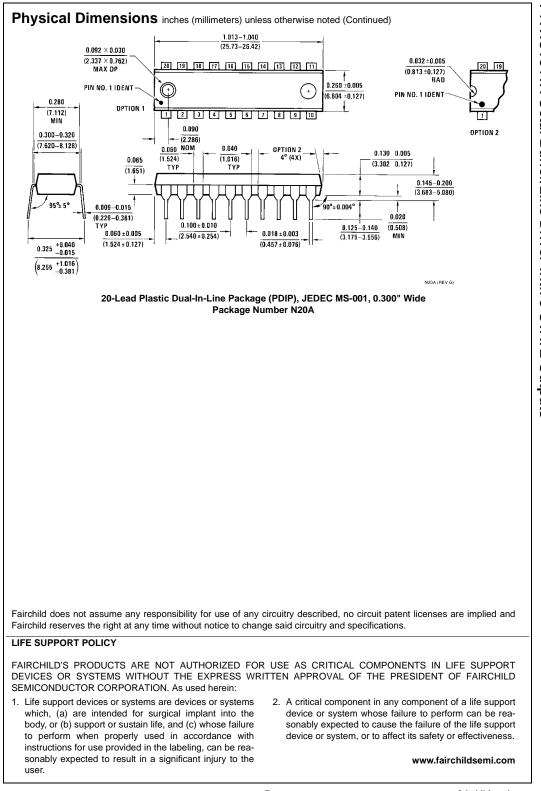

AC Electrical Characteristics

Symbol	Parameter	V _{cc}	T _A = 25 °C			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	
Symbol		(V)	Min	Тур	Max	Min	Max	Units	Cond	110115
t _{PLH}	Propagation Delay	5.0 ± 0.5		5.0	6.9	1.0	8.0	ns		$C_L = 15 \text{ pF}$
t _{PHL}	Time			5.5	7.9	1.0	9.0			$C_L = 50 \text{ pF}$
t _{PZL}	3-STATE Output	5.0 ± 0.5		8.3	11.3	1.0	13.0	ns	$R_L = 1 \ k\Omega$	$C_L = 15 \text{ pF}$
t _{PZH}	Enable Time			8.8	12.3	1.0	14.0			$C_L = 50 \text{ pF}$
t _{PLZ}	3-STATE Output	5.0 ± 0.5		9.4	11.9	1.0	13.5	ns	$R_L = 1 \ k\Omega$	$C_L = 50 \text{ pF}$
t _{PHZ}	Disable Time									
t _{OSLH}	Output to Output Skew	5.0 ± 0.5			1.0		1.0	ns	(Note 8)	$C_L = 50 \text{ pF}$
t _{OSHL}										
CIN	Input Capacitance			4	10		10	pF	V _{CC} = Open	
C _{OUT}	Output Capacitance			9				pF	$V_{CC} = 5.0V$	
C _{PD}	Power Dissipation Capacitance			19				pF	(Note 9)	


 $\textbf{Note 8:} Parameter guaranteed by design. t_{OSLH} = |t_{PLHmax} - t_{PLHmin}|; t_{OSHL} = |t_{PHLmax} - t_{PHLmin}|.$

Note 9: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (OPR.) = C_{PD} * V_{CC} * f_{IN} + $I_{CC}/8$ (per bit).


74VHCT541A


www.fairchildsemi.com

www.fairchildsemi.com

www.fairchildsemi.com

7

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 5962-8982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NLV74VHC125DTR2G NL17SG126DFT2G