

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]

Pin Names	Description
$\begin{aligned} & \mathrm{D}_{0}-\mathrm{D}_{7} \\ & \mathrm{CP} \\ & \overline{\mathrm{OE}} \\ & \mathrm{O}_{0}-\mathrm{O}_{7} \end{aligned}$	Data Inputs Clock Pulse Input 3-STATE Output Enable Input 3-STATE Outputs

Functional Description

The VHCT574A consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transi-

Truth Table

$$
|c| c|c|
$$

Inputs		
D_{n}	CP	$\overline{\mathrm{OE}}$
H	\sim	L
L	\sim	L
X	X	H
$\mathrm{H}=$ HIGH Voltage Level		
$\mathrm{L}=$ LOW Voltage Level		
$\mathrm{X}=$ Immaterial		
$\mathrm{Z}=$ High Impedance		
$\sim=$ LOW-to-HIGH Transition		

tion. With the Output Enable ($\overline{\mathrm{OE}})$ LOW, the contents of the eight flip-flops are available at the outputs. When the OE is HIGH, the outputs go to the high impedance state. Operation of the $\overline{O E}$ input does not affect the state of the flipflops.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 2)

Supply Voltage (V_{CC}) DC Input Voltage (V_{IN}) DC Output Voltage ($\mathrm{V}_{\text {OUT }}$)

> (Note 3)
(Note 4)
Input Diode Current ($l_{\text {IK }}$)
Output Diode Current (IOK) (Note 5)
DC Output Current (lout) DC V $\mathrm{VCC} / \mathrm{GND}$ Current (I_{CC})
Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$) Lead Temperature (T_{L})
(Soldering, 10 seconds)
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
-0.5 V to +7.0 V
$-20 \mathrm{~mA}$
$\pm 20 \mathrm{~mA}$
$\pm 25 \mathrm{~mA}$
$\pm 75 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 6)

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.5 V to +5.5 V
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	0 V to +5.5 V
Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$	
(Note 3)	0 V to V_{CC}
(Note 4)	0 V to +5.5 V
Operating Temperature $\left(\mathrm{T}_{\mathrm{OPR}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	$0 \mathrm{~ns} / \mathrm{V} \sim 20 \mathrm{~ns} / \mathrm{V}$

Note 2: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifications.
Note 3: HIGH or LOW state. I IOUT absolute maximum rating must be observed.
Note 4: When outputs are in OFF-State or when $\mathrm{V}_{\mathrm{CC}}=\mathrm{OV}$.
Note 5: $\mathrm{V}_{\text {OUT }}<\mathrm{GND}, \mathrm{V}_{\text {OUT }}>\mathrm{V}_{\mathrm{CC}}$ (Outputs Active).
Note 6: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Noise Characteristics

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		Units	Conditions
			Typ	Limits		
$\mathrm{V}_{\text {OLP }}$ (Note 7)	Quiet Output Maximum Dynamic V_{OL}	5.0	1.2	1.6	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\mathrm{V}_{\mathrm{OLV}}$ (Note 7)	Quiet Output Minimum Dynamic V_{OL}	5.0	-1.2	-1.6	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IHD}} \\ & \text { (Note 7) } \end{aligned}$	Minimum HIGH Level Dynamic Input Voltage	5.0		2.0	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$V_{\text {ILD }}$ (Note 7)	Maximum LOW Level Dynamic Input Voltage	5.0		0.8	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Note 7: Parameter guaranteed by design.

AC Electrical Characteristics

Note 8: Parameter guaranteed by design. $\mathrm{t}_{\mathrm{OSLH}}=\left|\mathrm{t}_{\mathrm{PLH} \text { max }}-\mathrm{t}_{\mathrm{PLH} \text { min }}\right| ; \mathrm{t}_{\mathrm{OSHL}}=\mid \mathrm{t}_{\mathrm{PHL}}$ max $-\mathrm{t}_{\mathrm{PHL}}$ min
Note 9: $\mathrm{C}_{\text {PD }}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{C C}(o p r)=.C_{P D}{ }^{*} V_{C C}{ }^{*} f_{I N}+I_{C C} / 8$ (per $\left.F / F\right)$. The total $C_{P D}$ when n pcs. of the Octal D Flip-Flop operates can be calculated by the equation: $C_{P D}($ total $)=20+12 n$.

AC Operating Requirements

Symbol	Parameter	v_{cc}(V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Minimum Pulse Width (CP)	5.0 ± 0.5	6.5			8.5		ns
$\mathrm{t}_{\text {s }}$	Minimum Set-Up Time	5.0 ± 0.5	2.5			2.5		ns
t_{H}	Minimum Hold Time	5.0 ± 0.5	2.5			2.5		

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION

DIMENSIONS ARE IN MILLIMETERS
NOTES:
A. CONFORUS TO JEDEC REGISTRATION ML-153, VARIATION AC,
REF NOTE G. DATE $^{7} / 93$.
B. DIMENSIONS ARE IN MILLIMETERS.
c. IIMENSIONS ARE EXCLUSIVE DF BURRS, MOLDS FLASH,
AND TE GAR EXTRUSIONS.
C. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

DETAIL A
MTC20REVD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip-Flops category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLV14027BDG NLX1G74MUTCG 703557B 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA NTE4598B 74LVC74APW-Q100J 74LCX16374MTDX 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74LVX74MTCX CD40174BF3A HMC723LC3CTR MM74HCT574MTCX 5962-8681501RA MM74HCT273WM SN74LVC74APW SN74LVC74AD SN74HC273DWR MC74HC11ADG M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74VHCV374FT(BJ) 74VHCV574FT(BJ) SNJ54ALS574BJ SN74LVC74ADR SN74HC574PWR SN74HC374AN SN74AS574DWR SN74ALS175NSR SN74HC175D SN74AC74D 74AHC1G79GV. 125 74AHC74D. 112 74HC112D.652 74HC574D.652 74HCT173D.652 74HCT374D. 652 74AHC574D. 118 74AHCT1G79GW. 125 74HC273D.652 74HC74D.653 74HC107D.652 74HC574D.653

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

