ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
Translating Bus Exchange Switch

7WBD383

The 7WBD383 is an advanced high-speed low-power translating bus exchange switch in ultra-small footprints.

Features

- High Speed: $\mathrm{t}_{\mathrm{PD}}=0.25 \mathrm{~ns}(\mathrm{Max}) @ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
- 3Ω Switch Connection Between 2 Ports
- Power Down Protection Provided on Inputs
- Zero Bounce
- TTL-Compatible Control Inputs
- Ultra-Small Pb-Free Packages
- These are $\mathrm{Pb}-$ Free Devices

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

AL, X, D383, AJ, AG	$=$ Specific Device Code
M	$=$ Date Code
A	$=$ Assembly Location
L	$=$ Lot Code
Y	$=$ Year Code
W	Week Code
-	Pb-Free Package

(Note: Microdot may be in either location)
*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Figure 2. UQFN8
(Top Thru-View)

Figure 1. UDFN8
(Top Thru-View)

Figure 4. Logic Diagram

FUNCTION TABLE

Input OE	Input EX	Function
L	L	$\mathrm{A}=\mathrm{C} ; \mathrm{B}=\mathrm{D}$
L	H	$\mathrm{A}=\mathrm{D} ; \mathrm{B}=\mathrm{C}$
H	X	Disconnect

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Control Pin Input Voltage	-0.5 to +7.0	V
$\mathrm{V}_{1 / \mathrm{O}}$	Switch Input / Output Voltage	-0.5 to +7.0	V
I_{IK}	Control Pin DC Input Diode Current $\quad \mathrm{V}_{\text {IN }}<\mathrm{GND}$	-50	mA
lok	Switch I/O Port DC Diode Current $\quad \mathrm{V}_{1 / \mathrm{O}}<$ GND	-50	mA
Io	ON-State Switch Current	± 128	mA
	Continuous Current Through V ${ }_{\text {CC }}$ or GND	± 150	mA
I_{CC}	DC Supply Current Per Supply Pin	± 150	mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 150	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance US8 (Note 1) UDFN8 UQFN8 Micro8	$\begin{aligned} & \hline 251 \\ & 111 \\ & 208 \\ & 392 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air at $85^{\circ} \mathrm{C}$ US8 UDFN8 UQFN8 Micro8	$\begin{gathered} \hline 498 \\ 1127 \\ 601 \\ 319 \end{gathered}$	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand VoltageHuman Body Mode (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\begin{gathered} >2000 \\ >200 \\ \text { N/A } \end{gathered}$	V
ILATCHUP	Latchup Performance Above V_{CC} and Below GND at $125^{\circ} \mathrm{C}$ (Note 5)	± 200	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2 ounce copper trace no air flow.
2. Tested to EIA / JESD22-A114-A.
3. Tested to EIA / JESD22-A115-A.
4. Tested to JESD22-C101-A.
5. Tested to EIA / JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	Positive DC Supply Voltage	4.0	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	Control Pin Input Voltage	0	5.5	V
$\mathrm{~V}_{\mathrm{I} / \mathrm{O}}$	Switch Input / Output Voltage	0	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Free-Air Temperature	-55	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Transition Rise or Fall Rate	Control Input Switch I / O	0	5
		nS / V		

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{gathered} T_{A}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		Unit
				Min	Typ	Max	Min	Max	
V_{IK}	Clamp Diode Voltage	$\mathrm{I}_{1 / \mathrm{O}}=-18 \mathrm{~mA}$	4.5			-1.2		-1.2	V
V_{IH}	High-Level Input Voltage (Control)		$\begin{gathered} 4.0 \text { to } \\ 5.5 \end{gathered}$	2.0			2.0		V
V_{IL}	Low-Level Input Voltage (Control)		$\begin{gathered} 4.0 \text { to } \\ 5.5 \end{gathered}$			0.8		0.8	V
V_{OH}	Output Voltage High	See Figure 5							
In	Input Leakage Current	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$	5.5			± 0.1		± 1.0	$\mu \mathrm{A}$
IOFF	Power Off Leakage Current	$\mathrm{V}_{1 / \mathrm{O}}=0$ to 5.5 V	0			± 0.1		± 1.0	$\mu \mathrm{A}$
$I_{\text {cc }}$	Quiescent Supply Current	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=0, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \mathrm{~V} \\ & \mathrm{OE}=\mathrm{GND} \\ & \mathrm{OE}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$	5.5			$\begin{aligned} & \pm 1.0 \\ & \pm 0.1 \end{aligned}$		$\begin{aligned} & \pm 1.0 \\ & \pm 1.0 \end{aligned}$	$\underset{\mu \mathrm{A}}{\mathrm{~mA}}$
$\Delta \mathrm{l}$ CC	Increase in Supply Current (Control Pin)	One input at 3.4 V ; Other inputs at V_{CC} or GND	5.5					2.5	mA
R_{ON}	Switch ON Resistance	$\begin{aligned} & \mathrm{V}_{1 / O}=0, \\ & \mathrm{I}_{1 / \mathrm{O}}=64 \mathrm{~mA} \\ & \mathrm{I}_{/ O}=30 \mathrm{~mA} \end{aligned}$	4.5		$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$		$\begin{aligned} & 7 \\ & 7 \end{aligned}$	Ω
		$\begin{aligned} & V_{1 / O}=2.4, \\ & I_{/ O}=15 \mathrm{~mA} \end{aligned}$			15	50		50	
		$\begin{aligned} & V_{1 / 0}=2.4, \\ & I_{/ / O}=15 \mathrm{~mA} \end{aligned}$	4.0		50	70		70	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Condition	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		Unit
				Min	Typ	Max	Min	Max	
$t_{\text {PD }}$	Propagation Delay, Bus to Bus	See Figure 6	$\begin{gathered} 4.0 \text { to } \\ 5.5 \end{gathered}$			0.25		0.25	ns
${ }_{\text {tPD-EX }}$	Propagation Delay, EX to Bus	See Figure 6 and Figure 7	$\begin{gathered} 4.0 \text { to } \\ 5.5 \end{gathered}$			4.5		4.5	ns
$t_{\text {EN }}$	Output Enable Time	See Figure 6	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	0.8	2.5	4.2	0.8	4.2	ns
			4.0	0.8	3.0	4.6	0.8	4.6	
$\mathrm{t}_{\text {DIS }}$	Output Disable Time		$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	0.8	3.0	4.8	0.8	4.8	ns
			4.0	0.8	2.9	4.4	0.8	4.4	
$\mathrm{C}_{\text {IN }}$	Control Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=5$ or 0 V	5.0		2.5				pF
$\mathrm{ClO}_{\text {(ON) }}$	Switch On Capacitance	Switch ON	5.0		10				pF
$\mathrm{ClO}_{\text {(OFF) }}$	Switch Off Capacitance	Switch OFF	5.0		5				pF

TYPICAL DC CHARACTERISTICS

Figure 5. Output Voltage High vs Supply Voltage

7WBD383

AC LOADING AND WAVEFORMS

Test	S1
t_{PD}	Open
$\mathrm{t}_{\mathrm{PLZ}} / \mathrm{t}_{\mathrm{PZL}}$	7 V
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\mathrm{PZH}}$	Open

${ }^{*} \mathrm{C}_{\mathrm{L}}$ includes probes and jig capacitance.

Voltage Waveforms Propagation Delay Times

Voltage Waveforms Enable and Disable Times
6. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control
7. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
8. The outputs are measured one at a time, with one transition per measurement.
9. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {DIS }}$.
10. $\mathrm{t}_{\text {PLL }}$ and $\mathrm{t}_{\mathrm{PZH}}$ are the same as t_{EN}.
11. $\mathrm{t}_{\mathrm{PHL}}$ and $\mathrm{t}_{\mathrm{PLH}}$ are the same as t_{PD}.

Figure 6. $\mathrm{t}_{\mathrm{PD}}, \mathrm{t}_{\mathrm{EN}}, \mathrm{t}_{\mathrm{DIS}}$ Loading and Waveforms

Figure 7. tpD-EX Waveforms

7WBD383

ORDERING INFORMATION

Device	Package	Shipping †
7WBD383USG	US88 (Pb-Free)	$3000 /$ Tape \& Reel
7WBD383MUTAG	UDFN8 (Pb-Free)	$3000 /$ Tape \& Reel
7WBD383AMUTCG	UQFN8 (Pb-Free)	$3000 /$ Tape \& Reel
7WBD383DMR2G	Micro8 (Pb-Free)	$4000 /$ Tape \& Reel
7WBD383DMUTCG	UDFN8, $1.95 \times 1.0,0.5 \mathrm{~mm}$ Pitch (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

UDFN8 $1.8 \times 1.2,0.4 P$
CASE 517AJ
ISSUE O

\rightarrow BOTTOM VIEW \quad| ϕ | 0.10 (M) | C | A | B |
| :--- | :--- | :--- | :--- | :--- |
| | 0.05 (ㄴ) | C | NOTE 3 | |

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS,
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL TIP.
4. MOLD FLASH ALLOWED ON TERMINALS ALONG EDGE OF PACKAGE. FLASH MAY ALONG EDGE OF PACKAGE. FLASH
NOT EXCEED 0.03 ONTO BOTTOM NOT EXCEED 0.03 ONTO BO
SURFACE OF TERMINALS.
5. DETAIL A SHOWS OPTIONAL CONSTRUCTION FOR TERMINALS.

	MILLIMETERS		
	DIMLIN	MIN	
A	0.45	MAX	
A1	0.00	0.05	
A3	0.127	REF	
b	0.15	0.25	
b2	0.30	REF	
D	1.80	BSC	
E	1.20 BSC		
e	0.40 BSC		
L	0.45	0.55	
L1	0.00	0.03	
L2	0.40	REF	

MOUNTING FOOTPRINT* SOLDERMASK DEFINED

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

UDFN8 1.95x1.0, 0.5P
CASE 517CA
ISSUE A

NDTES:

1. DIMENSIDNING AND TQLERANCING PER ASME Y14.5M, 2009.
2. CUNTRDLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TD PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FRDM THE TERMINAL TIP.
CDPLANARITY APPLIES TD TD ALL THE TERMINALS
4. PACKAGE DIMENSIONS EXCLUSIVE DF BURRS AND MILD FLASH.

NDTE 4
SIDE VIEW

* For additional information on our Pb-Free strategy and soldering details, please download the ZN Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

BDTtam VIEW NDTE 3

PACKAGE DIMENSIONS

UQFN8, 1.6x1.6, 0.5P

CASE 523AN
ISSUE O

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

7WBD383

PACKAGE DIMENSIONS

US8
CASE 493
ISSUE D

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

Micro8
CASE 846A
ISSUE K

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support

Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSX3018MUTAG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CSW\#PBF LTC1045CN\#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

