ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Field Stop Trench IGBT 650 V, 75 A, TO247

AFGHL75T65SQ

Using the novel field stop 4th generation IGBT technology, AFGHL75T65SQ offers the optimum performance with both low conduction and switching losses for high efficiency operations in various applications, which does not require reverse recovery specification.

Features

- Maximum Junction Temperature: $T_I = 175^{\circ}C$
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(Sat)} = 1.6 V (Typ.) @ I_C = 75 A$
- 100% of the Parts are Tested for ILM (Note 2)
- Fast Switching
- Tight Parameter Distribution
- AEC-Q101 Qualified and PPAP Capable

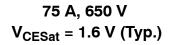
Typical Applications

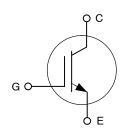
- Automotive
- On & Off Board Chargers
- DC-DC Converters
- PFC
- Industrial Inverter

MAXIMUM RATINGS

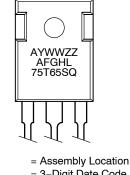
Rating	Symbol	Value	Unit
Collector-to-Emitter Voltage	V _{CES}	650	V
Gate-to-Emitter Voltage Transient Gate-to-Emitter Voltage	V _{GES}	±20 ±30	V
$ \begin{array}{c} \mbox{Collector Current (Note 1)} & @\ T_C = 25^\circ C \\ & @\ T_C = 100^\circ C \end{array} \end{array} $	Ι _C	80 75	A
Pulsed Collector Current (Note 2)	I _{LM}	300	А
Pulsed Collector Current (Note 3)	I _{CM}	300	А
$ \begin{array}{ll} \mbox{Maximum Power Dissipation} & @\ T_C = 25^\circ C \\ & @\ T_C = 100^\circ C \end{array} $	PD	375 188	W
Operating Junction / Storage Temperature Range	T _J , T _{STG}	–55 to +175	°C
Maximum Lead Temp. for Soldering Purposes, 1/8" from case for 10 seconds	ΤL	265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Value limited by bond wire


- 2. V_{CC} = 400 V, V_{GE} = 15 V, I_C = 300 A, R_G = 15 Ω , Inductive Load, 100% of the Parts are Tested.
- 3. Repetitive Rating: pulse width limited by max. Junction temperature

ON Semiconductor®


www.onsemi.com

MARKING DIAGRAM

ΖZ AFGHL75T65SQ

А YWW

> = 2-Digit Lot Traceability Code = Specific Device Code

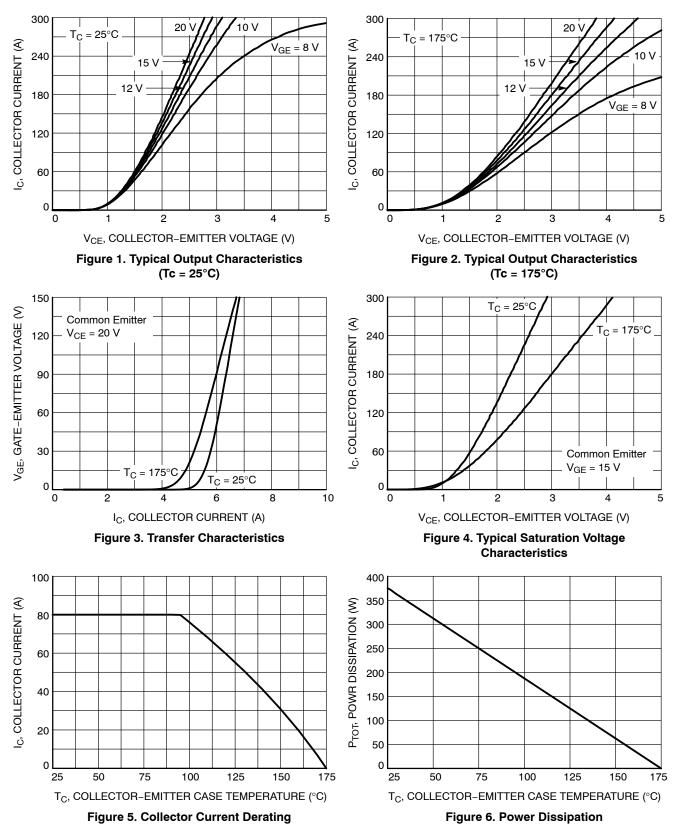
ORDERING INFORMATION

Device	Package	Shipping
AFGHL75T65SQ	TO-247-3L	30 Units / Rail

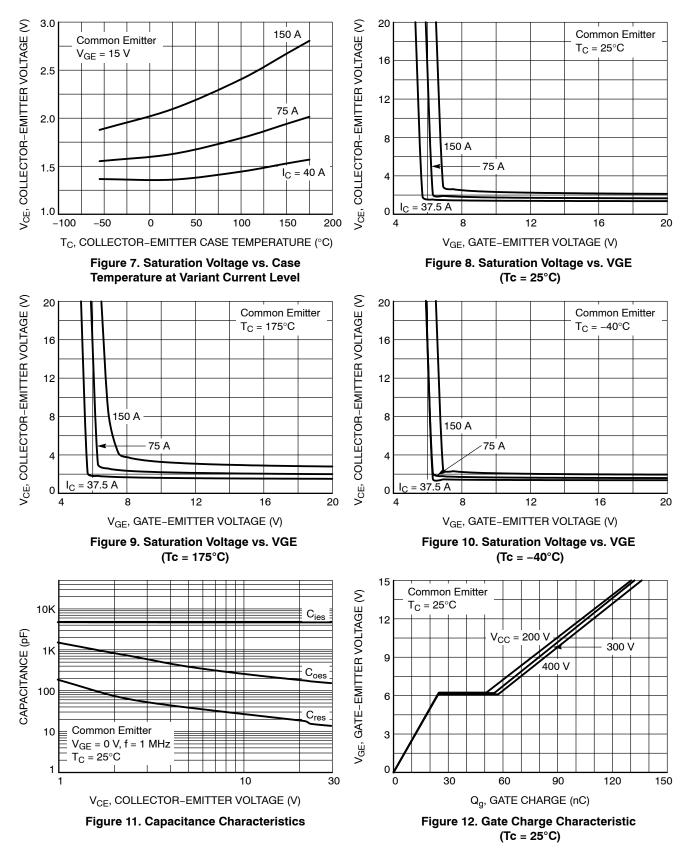
THERMAL CHARACTERISTICS

Rating	Symbol	Max	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ hetaJC}$	0.4	°C/W
Thermal resistance junction-to-ambient	$R_{ hetaJA}$	40	°C/W

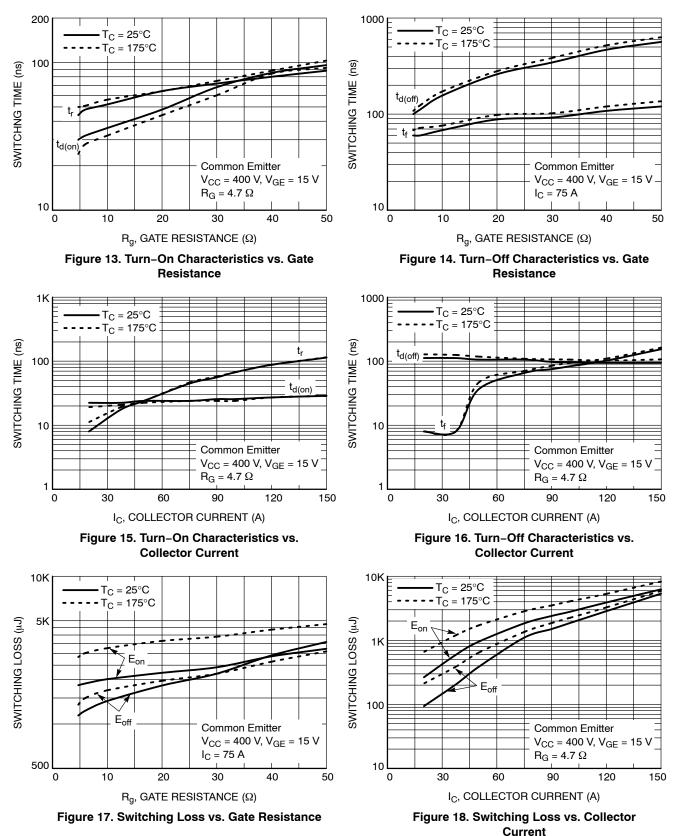
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)


Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•					•
Collector-emitter breakdown voltage, gate-emitter short-circuited	V _{GE} = 0 V, I _C = 1 mA	BV _{CES}	650	-	-	V
Temperature Coefficient of Breakdown Voltage	$V_{GE} = 0 V,$ $I_C = 1 mA$	$\frac{\Delta BV_{CES}}{\Delta T_{J}}$	-	0.6	-	V/°C
Collector-emitter cut-off current, gate-emitter short-circuited	V _{GE} = 0 V, V _{CE} = 650 V	I _{CES}	-	-	250	μΑ
Gate leakage current, collector-emitter short-circuited	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	-	-	±400	nA
ON CHARACTERISTICS	-					
Gate-emitter threshold voltage	$V_{GE} = V_{CE}, I_C = 75 \text{ mA}$	V _{GE(th)}	3.4	4.9	6.4	V
Collector-emitter saturation voltage	V_{GE} = 15 V, I _C = 75 A V _{GE} = 15 V, I _C = 75 A, T _J = 175°C	V _{CE(sat)}	-	1.6 2.0	2.1 -	V
DYNAMIC CHARACTERISTICS						
Input capacitance	$V_{CE} = 30 V,$	Cies	-	4574	-	pF
Output capacitance	V _{GE} = 0 V, f = 1 MHz	C _{oes}	-	289.4	-	
Reverse transfer capacitance	7	C _{res}	-	11.2	-	
Gate charge total	$V_{CE} = 400 V,$	Qg	-	139	-	nC
Gate-to-emitter charge	I _C = 75 A, V _{GE} = 15 V	Q _{ge}	-	25	-	
Gate-to-collector charge]	Q _{gc}	-	33	-	
SWITCHING CHARACTERISTICS, INDU	CTIVE LOAD					
Turn-on delay time	$T_{\rm C} = 25^{\circ}{\rm C},$	t _{d(on)}	-	23	-	ns
Rise time	V _{CC} = 400 V, I _C = 37.5 A,	t _r	-	17	-	
Turn-off delay time	R _G = 4.7 Ω, V _{GF} = 15 V,	t _{d(off)}	-	112	-	
Fall time	Inductive Load Energy losses include "tail" and diode	t _f	-	8	-	
Turn-on switching loss	reverse recovery. Diode from	E _{on}	-	0.61	-	mJ
Turn-off switching loss	AFGHL75T65SQD.	E _{off}	-	0.21	-]
Total switching loss	7	E _{ts}	-	0.82	-	
Turn-on delay time	$T_{\rm C} = 25^{\circ}{\rm C},$	t _{d(on)}	-	25	-	ns
Rise time	V _{CC} = 400 V, I _C = 75 A,	t _r	-	46	-	
Turn-off delay time	R _G = 4.7 Ω, V _{GE} = 15 V,	t _{d(off)}	-	106	-	
Fall time	Inductive Load Energy losses include "tail" and diode	t _f	-	67	-	
Turn-on switching loss	reverse recovery. Diode from	E _{on}	-	1.86	-	mJ
Turn-off switching loss	AFGHL75T65SQD.	E _{off}	-	1.13	-	
Total switching loss	7	E _{ts}	-	2.99	-	

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)


Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS, INDUCTIVE LOAD						
Turn-on delay time	$T_{\rm C} = 175^{\circ}{\rm C},$	t _{d(on)}	-	21	-	ns
Rise time	V _{CC} = 400 V, I _C = 37.5 A,	t _r	-	19	-	
Turn-off delay time	R _G = 4.7 Ω, V _{GF} = 15 V,	t _{d(off)}	-	126	-	
Fall time	Inductive Load Energy losses include "tail" and diode	t _f	-	7	-	
Turn-on switching loss	reverse recovery. Diode from	Eon	-	1.20	-	mJ
Turn-off switching loss	AFGHL75T65SQD.	E _{off}	-	0.41	-	
Total switching loss		E _{ts}	-	1.61	-	
Turn-on delay time	$T_{\rm C} = 175^{\circ}{\rm C},$	t _{d(on)}	-	24	-	ns
Rise time	$V_{CC} = 400 \text{ V},$ $I_C = 75 \text{ A},$	t _r	-	46	-	
Turn-off delay time	R _G = 4.7 Ω, V _{GF} = 15 V,	t _{d(off)}	-	115	-	
Fall time	Inductive Load Energy losses include "tail" and diode	t _f	-	72	-	
Turn-on switching loss	reverse recovery. Diode from	Eon	-	2.84	-	mJ
Turn-off switching loss	AFGHL75T65SQD.	E _{off}	-	1.35	-	1
Total switching loss		E _{ts}	-	4.20	-	1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

www.onsemi.com 6

TYPICAL CHARACTERISTICS

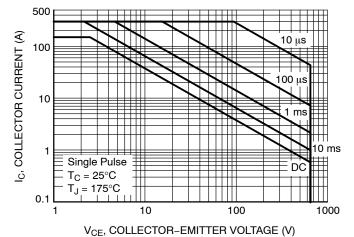


Figure 19. SOA Characteristics (FBSOA)

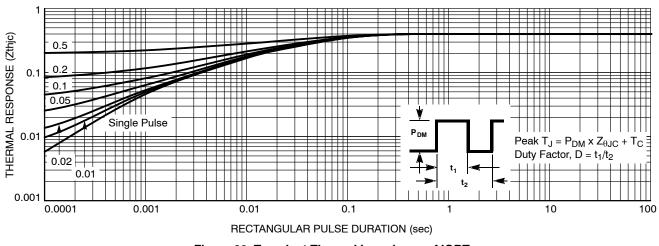
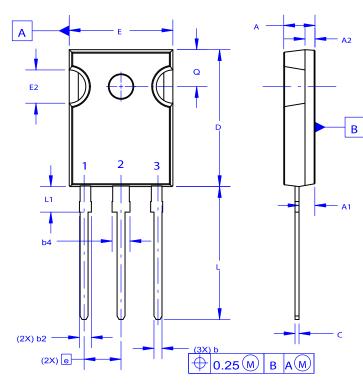
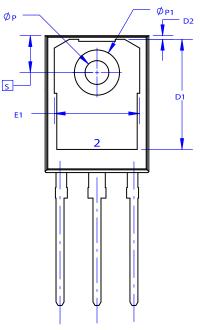



Figure 20. Transient Thermal Impedance of IGBT


PACKAGE DIMENSIONS

NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	4.58	4.70	4.82	
A1	2.20	2.40	2.60	
A2	1.40	1.50	1.60	
D	20.32	20.57	20.82	
E	15.37	15.62	15.87	
E2	4.96	5.08	5.20	
e	~	5.56	~	
L	19.75	20.00	20.25	
L1	3.69	3.81	3.93	
ØР	3.51	3.58	3.65	
Q	5.34	5.46	5.58	
S	5.34	5.46	5.58	
b	1.17	1.26	1.35	
b2	1.53	1.65	1.77	
b4	2.42	2.54	2.66	
С	0.51	0.61	0.71	
D1	13.08	~	~	
D2	0.51	0.93	1.35	
E1	12.81	~	~	
Ø P 1	6.60	6.80	7.00	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hy such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30 GT50JR22(STA1ES) TIG058E8-TL-H VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG RJH60F3DPQ-A0#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG IXA30RG1200DHGLB IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 IHFW40N65R5SXKSA1 APT70GR120J APT35GP120JDQ2 IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1 IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1 XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1 HGTG40N60B3 FGH60N60SMD_F085 FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0#T2 IKP20N60TXKSA1 IHW20N65R5XKSA1 IDW40E65D2FKSA1