Field Stop Trench IGBT With Soft Fast Recovery Diode and V_{CESAT}, V_{TH} Binning

650 V, 160 A

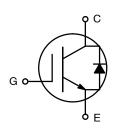
AFGY160T65SPD-B4

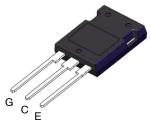
Features

- AEC-Q101 Qualified and PPAP Capable
- Very Low Saturation Voltage: V_{CE(sat)} = 1.6 V (Typ.) @ I_C = 160 A
- Maximum Junction Temperature: $T_J = 175^{\circ}C$
- Positive Temperature Co-Efficient
- Tight Parameter Distribution
- High Input Impedance
- 100% of the Parts are Dynamically Tested
- Short Circuit Ruggedness > 6 μs @ 25°C
- Copacked with Soft, Fast Recovery Extremefast Diode
- This Device is Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

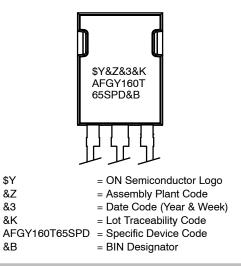
Benefits

- Very Low Conduction and Switching Losses for a High Efficiency Operation in Various Applications
- Rugged Transient Reliability
- Outstanding Parallel Operation Performance with Balance Current Sharing
- Low EMI


Applications


- Traction Inverter for HEV/EV
- Auxiliary DC/AC Converter
- Motor Drives
- Other Power-Train Applications Requiring High Power Switch

ON Semiconductor®


www.onsemi.com

TO-247-3LD CASE 340CU

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Ratings	Unit
V _{CES}	Collector to Emitter Voltage	650	V
V_{GES}	Gate to Emitter Voltage	±20	V
	Transient Gate to Emitter Voltage	±30	V
Ι _C	Collector Current @ T _C = 25°C (Note 1)	240	А
	Collector Current @ T _C = 100°C	220	А
I _{Nominal}	Nominal Current	160	А
I _{CM}	Pulsed Collector Current	480	А
I _{FM}	Diode Forward Current @ $T_C = 25^{\circ}C$ (Note 1)	240	А
	Diode Forward Current @ T _C = 100°C	188	А
PD	Maximum Power Dissipation @ $T_C = 25^{\circ}C$	882	W
	Maximum Power Dissipation @ $T_C = 100^{\circ}C$	441	W
SCWT	Short Circuit Withstand Time @ $T_C = 25^{\circ}C$	6	μs
$\Delta V / \Delta t$	Voltage Transient Ruggedness (Note 2)	10	V/ns
TJ	Operating Junction Temperature	–55 to +175	°C
T _{stg}	Storage Temperature Range	–55 to +175	°C
ΤL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Limited to bondwire. 2. $V_{CC} = 400 \text{ V}, V_{GE} = 15 \text{ V}, I_{CE} = 480 \text{ A}, Inductive load.}$

THERMAL CHARACTERISTICS

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$ (IGBT)	Thermal Resistance, Junction to Case	-	0.17	°C/W
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction to Case	-	0.32	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	-	40	°C/W

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Bin Designator	Packing Type	Qty per Tube/Reel*
AFGY160T65SPDA	AFGY160T65SPD-B4	А	Tube	30
AFGY160T65SPDB	AFGY160T65SPD-B4	В	Tube	30
AFGY160T65SPDC	AFGY160T65SPD-B4	С	Tube	30
AFGY160T65SPDD	AFGY160T65SPD-B4	D	Tube	30

*Generally all tubes in one box will belong to the same bin. In rare and unusual cases there may be tubes from more than one bin inside one box. Such mixing would not be considered a quality excursion. The primary container quantity (MPQ) for these binning products is 30 units and therefore partial box shipment can be expected.

ELECTRICAL CHARACTERISTICS OF THE IGBT (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
OFF CHARACTERISTICS							
BV _{CES}	Collector to Emitter Breakdown Voltage	V_{GE} = 0 V, I_{C} = 1 mA	650	-	-	V	
$\Delta BV_{CES}/\Delta T_{J}$	Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	-	0.6	-	V/°C	
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0 V$	-	-	40	μΑ	
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	±250	nA	

ON CHARACTERISTICS

V _{GE(th)A}	G-E Threshold (Bin A)	Ic = 160 mA; $V_{CE} = V_{GE}$	5.15	5.5	6.3	V
V _{CE(sat)A}	Collector to Emitter Saturation Voltage (Bin A)	lc = 160 A; V _{GE} = 15 V	1.5	1.6	1.67	V
$V_{GE(th)B}$	G-E Threshold (Bin B)	Ic = 160 mA; $V_{CE} = V_{GE}$	5.15	5.5	6.3	V
V _{CE(sat)B}	Collector to Emitter Saturation Voltage (Bin B)	lc = 160 A; V _{GE} = 15 V	1.57	1.64	2.05	V
V _{GE(th)C}	G-E Threshold (Bin C)	lc = 160 mA; $V_{CE} = V_{GE}$	4.3	5.3	5.65	V
V _{CE(sat)C}	Collector to Emitter Saturation Voltage (Bin C)	lc = 160 A; V _{GE} = 15 V	1.5	1.6	1.67	V
V _{GE(th)D}	G-E Threshold (Bin D)	$Ic = 160 \text{ mA}; V_{CE} = V_{GE}$	4.3	5.3	5.65	V
V _{CE(sat)D}	Collector to Emitter Saturation Voltage (Bin D)	lc = 160 A; V _{GE} = 15 V	1.57	1.64	2.05	V
V _{GE(th)}	G-E Threshold	$Ic = 160 \text{ mA}; V_{CE} = V_{GE}$	4.3	5.3	6.3	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	lc = 160 A; V _{GE} = 15 V	-	1.6	2.05	V
		lc = 160 A; V_{GE} = 15 V; T _J = 175°C	-	2.15	-	V

DYNAMIC CHARACTERISTICS

C _{ies}	Input Capacitance	V _{CE} = 30 V, V _{GE} = 0 V, f = 1 MHz	-	6710	-	pF
C _{oes}	Output Capacitance		-	450	-	pF
C _{res}	Reverse Transfer Capacitance		-	55	-	pF
R _G	Internal Gate Resistance	f = 1 MHz	-	3	-	Ω

SWITCHING CHARACTERISTICS

T _{d(on)}	Turn-On Delay Time	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 400 \text{ V}, \ I_C = 160 \text{ A}, \\ R_G = 5 \ \Omega, \ V_{GE} = 15 \text{ V}, \\ Inductive \ Load, \ T_J = 25^\circ C \end{array}$	-	53	-	ns
Tr	Rise Time		-	197	-	ns
T _{d(off)}	Turn-Off Delay Time		-	98	-	ns
T _f	Fall Time		-	141	-	ns
E _{on}	Turn-On Switching Loss		-	12.4	-	mJ
E _{off}	Turn-Off Switching Loss		-	5.7	-	mJ
E _{ts}	Total Switching Loss		-	18.1	-	mJ
T _{d(on)}	Turn-On Delay Time	$V_{CC} = 400 \text{ V}, \text{ I}_{C} = 160 \text{ A},$	-	52	-	ns
T _r	Rise Time	$R_G = 5 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_J = 175^{\circ}C$	-	236	-	ns
T _{d(off)}	Turn-Off Delay Time		-	104	-	ns
T _f	Fall Time		-	204	-	ns
E _{on}	Turn-On Switching Loss	1	-	21	-	mJ
E _{off}	Turn-Off Switching Loss]	-	8.5	-	mJ
E _{ts}	Total Switching Loss]	-	29.5	-	mJ

ELECTRICAL CHARACTERISTICS OF THE IGBT (T_J = 25°C unless otherwise noted) (continued)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
SWITCHING CHARACTERISTICS						
Qg	Total Gate Charge	V _{CE} = 400 V, I _C = 160 A, V _{GE} = 15 V	-	163	245	nC
Q _{ge}	Gate to Emitter Charge	V _{GE} = 15 V	-	50	-	nC
Q _{gc}	Gate to Collector Charge		-	49	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS OF THE DIODE (T_J = 25° C unless otherwise noted)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{FM}	Diode Forward Voltage	I _F = 160 A	$T_J = 25^{\circ}C$	-	1.4	1.7	V
			T _J = 175°C	-	1.35	-	
E _{rec}	Reverse Recovery Energy	$V_{CE} = 400 \text{ V}, I_F = 160 \text{ A},$	$T_J = 25^{\circ}C$	-	598	-	μJ
		$\Delta I_{F}/\Delta t = 1000 \text{ A}/\mu \text{s}$	T _J = 175°C	-	4000	-	
T _{rr}	Diode Reverse Recovery		$T_J = 25^{\circ}C$	-	132	-	ns
	Time		T _J = 175°C	-	245	-	
Q _{rr}	Diode Reverse Recovery		$T_J = 25^{\circ}C$	-	3.3	-	μC
	Charge		T _J = 175°C	-	12.5	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

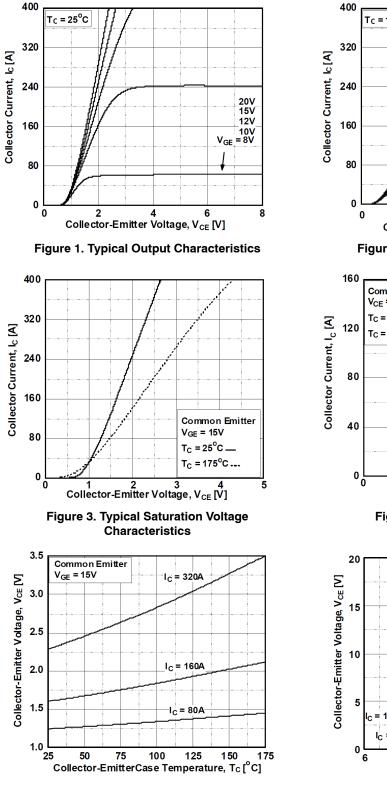


Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

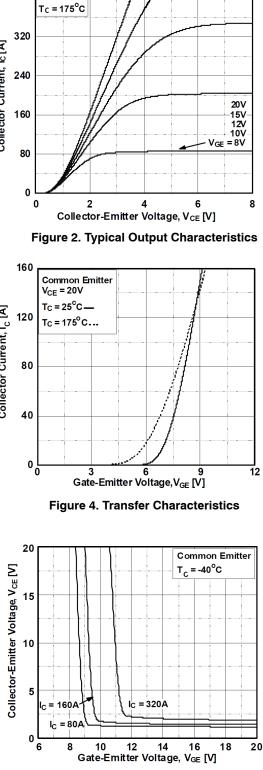
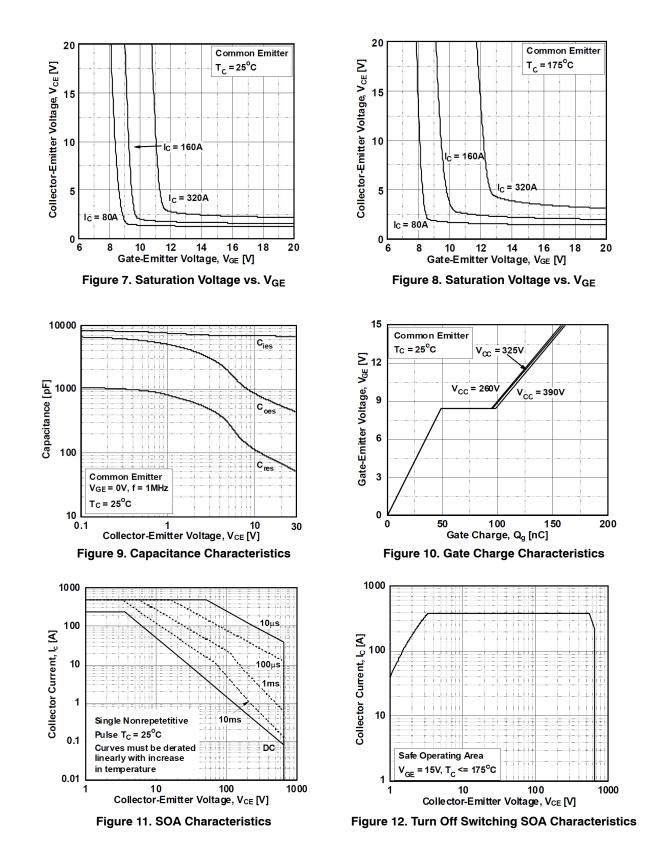



Figure 6. Saturation Voltage vs. V_{GE}

TYPICAL PERFORMANCE CHARACTERISTICS

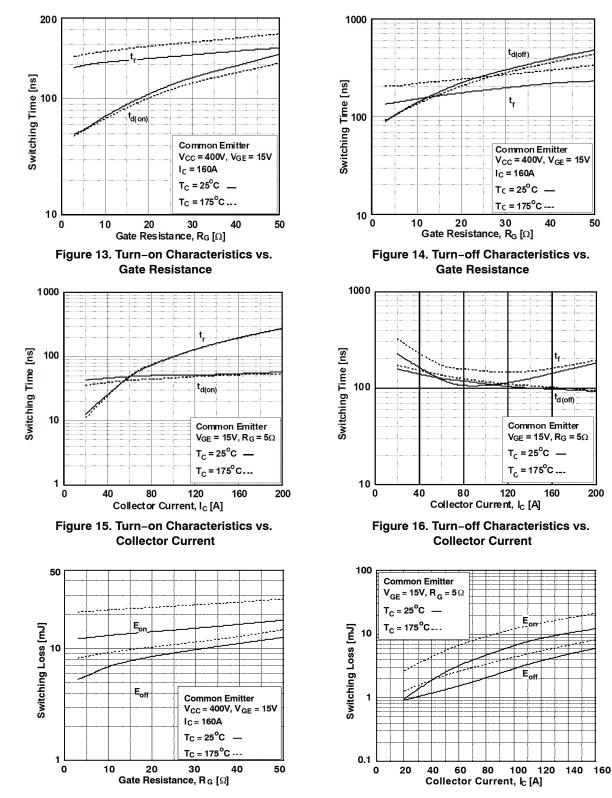



Figure 17. Switching Loss vs. Gate Resistance

Figure 18. Switching Loss vs. Collector Current

50

600650



Figure 24. Transient Thermal Impedance of IGBT

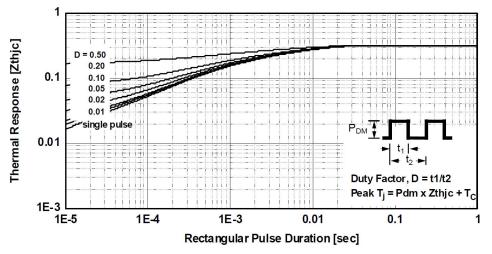
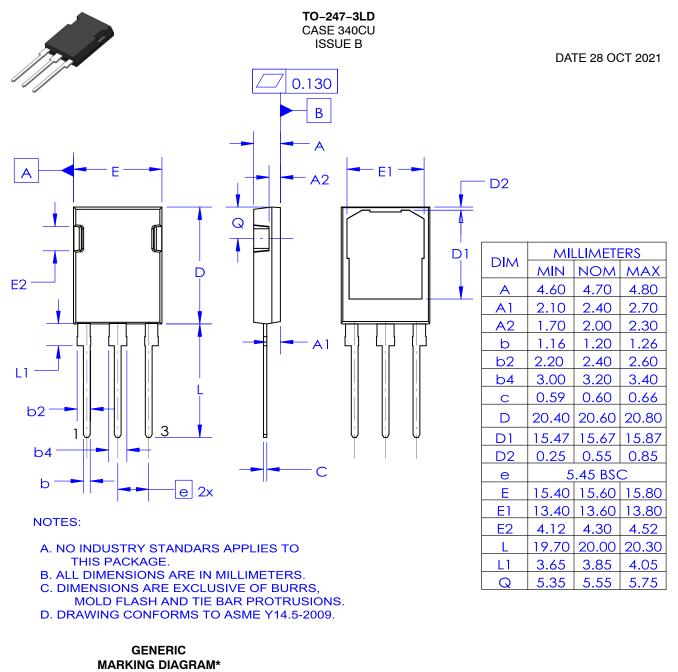



Figure 25. Transient Thermal Impedance of Diode

Onsem

С AYWWZZ XXXXXXXXX

XXXXXXXXXX

XXXX = Specific Device Code = Assembly Site Code = Year ww = Work Week

Α

Υ

ZZ

= Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	Electronic versions are uncontrolled except when accessed directly from the D Printed versions are uncontrolled except when stamped "CONTROLLED COP"			
DESCRIPTION:	TO-247-3LD		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30 GT50JR22(STA1ES) TIG058E8-TL-H VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG RJH60F3DPQ-A0#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG IXA30RG1200DHGLB IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 IHFW40N65R5SXKSA1 APT70GR120J APT35GP120JDQ2 IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1 IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1 XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1 HGTG40N60B3 FGH60N60SMD_F085 FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0#T2 IKP20N60TXKSA1 IHW20N65R5XKSA1 IDW40E65D2FKSA1