Peak EMI Reducing Solution

Features

- Generates an EMI optimized clock signal at the output.
- Integrated loop filter components.
- Operates with a $3.3 \mathrm{~V} / 2.5 \mathrm{~V}$ supply.
- Operating current less than 4 mA .
- CMOS design.
- Input frequency: 12 MHz
- Generates a 1X low EMI spread spectrum clock of the input frequency.
- Frequency deviation: $\pm 0.4 \%$ (Typ) @ 12 MHz Input Frequency
- Available in 6L-TSOP (6L-TSOT-23) package.

Product Description

The ASM3P2863A is a versatile spread spectrum frequency modulator designed specifically for a wide range of clock frequencies. The ASM3P2863A reduces electromagnetic interference (EMI) at the clock source, allowing system wide reduction of EMI of all clock dependent signals. The ASM3P2863A allows significant system cost savings by reducing the number of circuit board layers, ferrite beads and shielding that are traditionally required to pass EMI regulations.

The ASM3P2863A uses the most efficient and optimized modulation profile approved by the FCC and is implemented by using a proprietary all digital method.

The ASM3P2863A modulates the output of a single PLL in order to "spread" the bandwidth of a synthesized clock, and more importantly, decreases the peak amplitudes of its harmonics. This result in significantly lower system EMI compared to the typical narrow band signal produced by oscillators and most frequency generators. Lowering EMI by increasing a signal's bandwidth is called 'spread spectrum clock generation.'

Applications

The ASM3P2863A is targeted towards all portable devices with very low power requirements like MP3 players, Notebooks and Digital still cameras.

Key Specifications

Description	Specification
Supply voltages	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} / 3.3 \mathrm{~V}$
Cycle-to-Cycle Jitter	$\pm 200 \mathrm{pS}$ (typ)
Output Duty Cycle	$45 / 55 \%$ (worst case)
Modulation Rate Equation	$\mathrm{F}_{\mathrm{IN}} / 256$
Frequency Deviation	$\pm 0.4 \%$ (Typ) @ 12 MHz

Pin Configuration (6L-TSOP Package)

Pin Description

Pin\#	Pin Name	Type	Description
1	REFOUT	O	Buffered output of the input frequency.
2	XOUT	O	Crystal connection. If using an external reference, this pin must be left unconnected.
3	XIN / CLKIN	I	Crystal connection or external reference frequency input. This pin has dual functions. It can be connected either to an external crystal or an external reference clock.
4	VDD	P	Power supply for the entire chip.
5	ModOUT	O	Spread spectrum clock output.
6	VSS	P	Ground connection.

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
VDD, $\mathrm{V}_{\text {IN }}$	Voltage on any input pin with respect to Ground	-0.5 to +4.6	V
Tstg	Storage temperature	-65 to +125	${ }^{\circ}$
T_{s}	Max. Soldering Temperature (10 sec)	260	${ }^{\circ}$
TJ	Junction Temperature	150	${ }^{\circ}$
TDv	Static Discharge Voltage (As per JEDEC STD22- A114-B)	2	KV
Note: These are stress ratings only and are not implied for functional use. Exposure to absolute maximum ratings for prolonged periods of time may affectdevice reliability.			

Operating Conditions

Parameter	Description	Min	Max	Unit
VDD	Supply Voltage	2.375	3.6	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature (Ambient Temperature)	0	+70	C
C_{L}	Load Capacitance		15	pF
C_{IN}	Input Capacitance		7	pF

DC Electrical Characteristics for 2.5V Supply

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{V}_{\text {IL }}$	Input low voltage	VSS-0.3		0.8	V
V_{IH}	Input high voltage	2.0		VDD+0.3	V
1 IL	Input low current			-35	$\mu \mathrm{A}$
IIH	Input high current			35	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{XOL}}$	XOUT output low current (@ 0.5V, VDD = 2.5V)		3		mA
$\mathrm{I}_{\text {хOH }}$	XOUT output high current (@1.8V, VDD = 2.5V)		3		mA
VoL	Output low voltage (VDD $=2.5 \mathrm{~V}$, l OL $=8 \mathrm{~mA}$)			0.6	V
V OH	Output high voltage (VDD $=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=8 \mathrm{~mA}$)	1.8			V
IDD	Static supply current ${ }^{1}$		0.8		mA
Icc	Dynamic supply current (2.5V, 12MHz and no load)		3		mA
VDD	Operating voltage	2.375	2.5	2.625	V
ton	Power-up time (first locked cycle after power-up)			5	mS
Zout	Output impedance		50		Ω
Note: 1. XIN / CLKIN pin is pulled low.					

AC Electrical Characteristics for 2.5V Supply

Symbol	Parameter	Min	Typ	Max	Unit
CLKIN	Input frequency		12		MHz
ModOUT	Output frequency		12		MHz
f_{d}	Frequency Deviation		± 0.4		$\%$
$\mathrm{t}_{\mathrm{LH}}{ }^{1}$	Output rise time (measured from 0.7 V to 1.7 V)	0.5	1.5	1.7	nS
$\mathrm{t}_{\mathrm{HL}}{ }^{1}$	Output fall time (measured from 1.7 V to 0.7 V$)$	0.5	1.0	1.2	nS
t_{Jc}	Jitter (Cycle-to-Cycle)		± 200	± 300	pS
t_{D}	Output duty cycle	45	50	55	$\%$
Note: $1 . \mathrm{t}_{\mathrm{LH}}$ and $\mathrm{t}_{\text {HL }}$ are measured into a capacitive load of 15 pFF.					

DC Electrical Characteristics for 3.3V Supply

Symbol	Parameter	Min	Typ	Max	Unit
VIL	Input low voltage	VSS-0.3		0.8	V
V_{IH}	Input high voltage	2.0		VDD+0.3	V
$1 /$ L	Input low current			-35	$\mu \mathrm{A}$
IIH	Input high current			35	$\mu \mathrm{A}$
IxoL	XOUT output low current (@ 0.4V, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$)		3		mA
$\mathrm{I}_{\text {XOH }}$	XOUT output high current (@ 2.5V, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$)		3		mA
$\mathrm{V}_{\text {OL }}$	Output low voltage (VDD $=3.3 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$)			0.4	V
V OH	Output high voltage (VDD $=3.3 \mathrm{~V}$, $\mathrm{I}_{\mathrm{OH}}=8 \mathrm{~mA}$)	2.5			V
IDD	Static supply current ${ }^{1}$		1		mA
Icc	Dynamic supply current (3.3V, 12MHz and no load)		3.5		mA
VDD	Operating Voltage	3.0	3.3	3.6	V
ton	Power-up time (first locked cycle after power-up)			5	mS
Zout	Output impedance		45		Ω
Note: 1. XIN / CLKIN pin is pulled low.					

AC Electrical Characteristics for 3.3V Supply

Symbol	Parameter	Min	Typ	Max	Unit
CLKIN	Input frequency		12		MHz
ModOUT	Output frequency		12		MHz
f_{d}	Frequency Deviation		± 0.4		$\%$
$\mathrm{t}_{\mathrm{LH}}{ }^{1}$	Output rise time (measured from 0.8 to 2.0 V$)$	0.5	1.4	1.6	nS
$\mathrm{t}_{\mathrm{HL}}{ }^{1}$	Output fall time (measured at 2.0 V to 0.8 V$)$	0.4	1.0	1.2	nS
t_{JC}	Jitter (Cycle-to-Cycle)		± 200	± 300	pS
t_{D}	Output duty cycle	45	50	55	$\%$
Note: $1 . \mathrm{t}_{\mathrm{LH}}$ and t_{HL} are measured into a capacitive load of 15 pFF					

Crystal Specifications

Fundamental AT cut parallel resonant crystal	
Nominal frequency	12 MHz
Frequency tolerance	$\pm 50 \mathrm{ppm}$ or better at $25^{\circ} \mathrm{C}$
Operating temperature range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Load capacitance $\left(\mathrm{C}_{\mathrm{P}}\right)$	18 pF
Shunt capacitance	7 pF maximum
ESR	25Ω

Note: C_{L} is Load Capacitance and $R x$ is used to prevent oscillations at overtone frequency of the Fundamental frequency.

Typical Crystal Interface Circuit

$C_{L}=2^{*}\left(C_{P}-C_{S}\right)$,
Where $C_{p}=$ Load capacitance of crystal from crystal vendor datasheet. $\mathrm{C}_{\mathrm{S}}=$ Stray capacitance due to $\mathrm{C}_{\mathrm{IN},} \mathrm{PCB}$, Trace, etc.

Typical Application Schematic

Package Information

6L-TSOP Package

Symbol	Dimensions			
	Inches		Millimeters	
	Min	Max	Min	Max
A	$\ldots \ldots$	0.04	\ldots.	1.00
A1	0.00	0.004	0.00	0.10
A2	0.033	0.036	0.84	0.90
b	0.012	0.02	0.30	0.50
H	0.005 BSC		0.127 BSC	
D	0.114 BSC		2.90 BSC	
B	0.06 BSC		1.60 BSC	
e	0.0374 BSC		0.950 BSC	
C	0.11 BSC		2.80 BSC	
L	0.0118	0.02	0.30	0.50
θ	0°	4°	00°	4°

Ordering Information

Part Number	Marking	Package Type	Temperature
ASM3P2863AF-06OR	V4L	$6 L-T S O P ~(6 L-T S O T-23), ~ T A P E ~ \& ~ R E E L, ~$ Pb Free	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

A "microdot" placed at the end of last row of marking or just below the last row toward the center of package indicates Pb -free.

Abstract

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. U.S Patent Pending; Timing-Safe and Active Bead are trademarks of PulseCore Semiconductor, a wholly owned subsidiary of ON Semiconductor. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free
USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website:

 www.onsemi.comOrder Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Generators \& Support Products category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
5P49V5901B744NLGI 5P49V5929B502NLGI 5P49V5935B520LTGI CV183-2TPAG 8T49N004A-039NLGI 9FGV0631CKLF 9FGV0641AKLFT 9LRS3197AKLF 9VRS4450AKLF NB3N51132DTR2G 932SQ426AKLF 950810CGLF 9DBV0531AKILF 9DBV0741AKILF 9FGV0641AKLF 9UMS9633BKLF 9VRS4420DKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 NB3H5150-01MNTXG 6INT61041NDG PL602-20-K52TC PL613-51QC 9FGV0641AKILF ZL30314GKG2 ZL30250LDG1 ZL30142GGG2 9UMS9633BKILFT 9FGV0631CKLFT 9FGV0631CKILF PI6LC48P0101LIE DS1099U-ST+ MAX24305EXG+ PI6LC48H02-01LIE 82P33814ANLG 932SQ426AGLFT 840021AGLF MAX3674ECM+ 5V49EE901-064PGGI ZL30244LFG7 DS1089LU-23C+ PI6LC48C21LE ZL30106QDG1 ZL30245LFG7 PI6LC48L0201LIE 8T49N283C-998NLGI DS1050Z-025+T\&R 9FGV0641AKILFT PI6LC48P0405LIE

