Sigfox ${ }^{\circledR}$ RF Transceiver System in Package (SiP) for Up-Link and Down-Link Applications

Ultra-Low Power, Ultra-Miniature, AT Command/API Controlled, Sigfox Verified and CE Certified

OVERVIEW

Circuit Description

AX-SIP-SFEU and AX-SIP-SFEU-API are ultra-low power, ultra-miniature System-in-Package (SiP) solutions for a node on the Sigfox network with both up- and down-link functionality.

With a footprint of just $7 \mathrm{~mm} \times 9 \mathrm{~mm}$ and conformal shielding, the AX-SIP-SFEU SiP, contains all the necessary components and firmware for transmit and receive operation on the European (RC1) Sigfox network. No additional passive components or reference frequency providing parts are required on the customer's PCB. A single-ended 50Ω antenna port is provided.

The AX-SIP-SFEU connects to the customer product using a logic level RS232 UART. AT commands are used to send frames and configure radio parameters.

The AX-SIP-SFEU-API variant is intended for customers wishing to write their own application software based on the AX-SIP-SF-LIB-1-GEVK library.

The SiP is fully Sigfox Verified and CE certified, vastly reducing risk and time to market delays.

Features

Functionality and Ecosystem:

- Single package, zero external components, full Sigfox up-link and down-link functionality controlled by AT commands or API
- The AX-SIP-SFEU and AX-SIP-SFEU-API SiPs are part of a whole development and product ecosystem available from ON Semiconductor for any Sigfox requirement. Other parts of the ecosystem include
- Ready to go development kit

DVK-SIP-SFEU-[API]-X-GEVK including
a 2 year Sigfox subscription

- Sigfox Verified
- CE Certified

General Features:

- SIP38 $9 \mathrm{~mm} \times 7 \mathrm{~mm}$ package
- Conformal shielding
- Supply range $2.1 \mathrm{~V}-3.6 \mathrm{~V}$
- $-30^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Temperature sensor
- Supply voltage measurements
- 15 GPIO pins
- 6 GPIO pins with selectable voltage measure functionality, differential (1 V or 10 V range) or single ended (1 V range) with 10 bit resolution
- 2 GPIO pins with selectable sigma delta DAC output functionality
- 2 GPIO pins with selectable output clock
- 3 GPIO pins selectable as SPI master interface
- Integrated RX/TX switching with single-ended 50Ω antenna pin
Power Consumption:
- Ultra-low Power Consumption:
- Charge required to send a Sigfox OOB packet at nominal transmitter power (13 dBm typical at nominal temperature): 0.24 C
- Deep Sleep mode current: 180 nA
- Sleep mode current: $1.2 \mu \mathrm{~A}$
- Standby mode current: 0.55 mA
- Continuous radio RX-mode at 869.525 MHz : 14 mA
- Continuous radio TX-mode at 868.130 MHz : $45 \mathrm{~mA} @$ nominal transmitter power (13 dBm)
High Performance Narrow-band Sigfox RF Transceiver
- Receiver
- Carrier frequency 869.525 MHz
- Data-rate 600 bps FSK
- Sensitivity
$-125 \mathrm{dBm} @ 600 \mathrm{bps}, 869.525 \mathrm{MHz}$, GFSK
- 0 dBm maximum input power
- Transmitter
- Carrier frequency 868.13 MHz
- Data-rate 100 bps PSK

AX-SIP-SFEU, AX-SIP-SFEU-API

- High efficiency, high linearity integrated power amplifier
- Maximum output power 13 dBm
- Power level programmable in 1 dBm steps

Applications

- Sigfox networks up-link and down-link

BLOCK DIAGRAM

Figure 1. Functional Block Diagram of the AX-SIP-SFEU / AX-SIP-SFEU-API

AX-SIP-SFEU, AX-SIP-SFEU-API

Table 1. PIN FUNCTION DESCRIPTIONS

Symbol	Pin(s)	Type	Description
GND	1	P	Ground
GND	2	P	Ground
ANT	3	A	Single-ended 50Ω antenna input/output
GND	4	P	Ground
NC	5	N	Do not connect
GND	6	P	Ground
NC	7	N	Do not connect
NC	8	N	Do not connect
NC	9	N	Do not connect
GPIO11	10	I/O/PU	General purpose IO
GPIO10	11	I/O/PU	General purpose IO
GPIO8	12	I/O/PU	General purpose IO
GPIO7	13	I/O/PU	General purpose IO, selectable SPI functionality (MISO)
GPIO6	14	I/O/PU	General purpose IO, selectable SPI functionality (MOSI)
GPIO5	15	I/O/PU	General purpose IO, selectable SPI functionality (SCK)
GPIO4	16	I/O/PU	General purpose IO, selectable $\Sigma \Delta$ DAC functionality, selectable clock functionality
CPU_LED	17	0	CPU activity indicator
RADIO_LED	18	0	Radio activity indicator
GPIO9	19	I/O/PU	General purpose IO, wakeup from deep sleep
UARTTX	20	0	UART transmit
UARTRX	21	I/PU	UART receive
$\begin{aligned} & \mathrm{RX} \text { LED/ } \\ & \text { DBG_DATA } \end{aligned}$	22	$\begin{gathered} \mathrm{O} \\ \mathrm{I} / \mathrm{O} \end{gathered}$	Receive activity indicator in AX-SIP-SFEU. Debugger data line in AX-SIP-SFEU-API.
TX LED/ DBG_CLK	23	O	Transmit activity indicator in AX-SIP-SFEU. Debugger clock line in AX-SIP-SFEU-API.
NC/ DBG_EN	24	$\begin{aligned} & \hline \mathrm{PD} \\ & \mathrm{PD} \end{aligned}$	Do not connect in AX-SIP-SFEU. Debugger enable line in AX-SIP-SFEU-API.
RESET_N	25	I/PU	Optional reset pin. Internal pull-up resistor is permanently enabled, nevertheless it is recommended to connect this pin to VDD_IO if it is not used.
GND	26	P	Ground
VDD_IO	27	P	Unregulated power supply
GPIOO	28	I/O/A/PU	General purpose IO, selectable ADC functionality, selectable $\Sigma \Delta$ DAC functionality, selectable clock functionality
GPIO1	29	I/O/A/PU	General purpose IO, selectable ADC functionality
GPIO2	30	I/O/A/PU	General purpose IO, selectable ADC functionality
NC	31	N	Do not connect
NC	32	N	Do not connect
GPIO3	33	I/O/A/PU	General purpose IO, selectable ADC functionality
GPIO12	34	I/O/A/PU	General purpose IO, selectable ADC functionality
GPIO13	35	I/O/A/PU	General purpose IO, selectable ADC functionality
GPIO14	36	I/O/PU	General purpose IO
NC	37	N	Do not connect
NC	38	N	Do not connect
GND	Center pads	P	Ground on 6 center pads of SIP38, must be connected

A = analog input or input/output
I = digital input signal
$\mathrm{O}=$ digital output signal
$\mathrm{PU}=$ pull-up
I/O = digital input/output signal
$\mathrm{N}=$ not to be connected
$\mathrm{P}=$ power or ground
$\mathrm{PD}=$ pull - down
All digital inputs are Schmitt trigger inputs, digital input and output levels are LVCMOS/LVTTL compatible. Pins GPIO[3:0] and GPIO[13:12] must not be driven above VDD_IO, all other digital inputs are 5 V tolerant. All GPIO pins and UARTRX start up as input with pull-up. For explanations on how to use the GPIO pins, see chapter "AT Commands".
$0=$ pin drives low
1 = pin drives high
$\mathrm{Z}=$ pin is high impedance input
$\mathrm{U}=$ pin is input with pull-up
$\mathrm{A}=$ pin is analog input
$\mathrm{T}=$ pin is driven by clock or DAC

Table 2.

Pin	Possible GPIO Modes
GPIO0	$0,1, \mathrm{Z}, \mathrm{U}, \mathrm{A}, \mathrm{T}$
GPIO1	$0,1, \mathrm{Z}, \mathrm{U}, \mathrm{A}$
GPIO2	$0,1, \mathrm{Z}, \mathrm{U}, \mathrm{A}$
GPIO3	$0,1, \mathrm{Z}, \mathrm{U}, \mathrm{A}$
GPIO4	$0,1, \mathrm{Z}, \mathrm{U}, \mathrm{T}$
GPIO5	$0,1, \mathrm{Z}, \mathrm{U}$
GPIO6	$0,1, \mathrm{Z}, \mathrm{U}$
GPIO7	$0,1, \mathrm{Z}, \mathrm{U}$
GPIO8	$0,1, \mathrm{Z}, \mathrm{U}$
GPIO9	$0,1, \mathrm{Z}, \mathrm{U}$
GPIO10	$0,1, \mathrm{Z}, \mathrm{U}$
GPIO11	$0,1, \mathrm{Z}, \mathrm{U}$
GPIO12	$0,1, \mathrm{Z}, \mathrm{U}, \mathrm{A}$
GPIO13	$0,1, \mathrm{Z}, \mathrm{U}, \mathrm{A}$
GPIO14	$0,1, \mathrm{Z}, \mathrm{U}$

Pinout Drawing

Pins 22-24 have different functionalities in AT command and API versions, so for these pins AX-SIP-SFEU/AX-SIP-SFEU-API explanations are shown respectively.

Figure 2. Pinout Drawing (Top View)

SPECIFICATIONS

Table 3. ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Condition	Min	Max	Units
VDD_IO	Supply voltage		-0.5	3.8	V
IDD	Supply current			200	mA
$\mathrm{P}_{\text {tot }}$	Total power consumption			800	mW
P_{i}	Absolute maximum input power at receiver input	ANT pin in RX mode		10	dBm
I_{11}	DC current into any pin except ANT		-10	10	mA
I_{12}	DC current into pin ANT		-100	100	mA
I_{0}	Output Current			40	mA
$\mathrm{~V}_{\mathrm{ia}}$	Input voltage ANT pin		-0.5	3.8	V
	Input voltage digital pins		-0.5	5.5	V
$\mathrm{~V}_{\text {es }}$	Electrostatic handling		-2000	2000	V
$\mathrm{~T}_{\text {amb }}$	Operating temperature		-30	85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature			85	${ }^{\circ}{ }^{\circ} \mathrm{C}$
T_{j}	Junction Temperature			150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

AX-SIP-SFEU, AX-SIP-SFEU-API

DC Characteristics

Table 4. SUPPLIES
(Conditions for all current and charge values unless otherwise specified are for the DVK-SIP-SFEU-1-GEVK hardware configuration.)

Symbol	Description	Condition	Min	Typ	Max	Units
$\mathrm{T}_{\text {AMB }}$	Operational ambient temperature		-30	27	85	${ }^{\circ} \mathrm{C}$
VDD_{10}	I/O and voltage regulator supply voltage		2.1	3.0	3.6	V
VDD ${ }_{\text {IO }} \mathrm{R} 1$	I/O voltage ramp for reset activation (Note 2)	Ramp starts at VDD IO $\leq 0.1 \mathrm{~V}$	0.1			V / ms
VDD ${ }_{\text {IO R2 }}$	I/O voltage ramp for reset activation (Note 2)	Ramp starts at $0.1 \mathrm{~V}<\mathrm{VDD} \mathrm{IO}<0.7 \mathrm{~V}$	3.3			V / ms
IDS	Deep sleep mode current	AT\$P = 2		180		nA
ISLP	Sleep mode current	AT\$P = 1		1.2		$\mu \mathrm{A}$
IstDBY	Standby mode current (Note 3)			0.55		mA
IRX_CONT	Current consumption continuous RX	AT\$SE		14		mA
QSFX_OOB_14	Charge to send a Sigfox out of band message, nominal transmitter power (Note 4)	AT\$SO		0.24		C
$\mathrm{Q}_{\text {SFX_BIT_14 }}$	Charge to send a bit, nominal transmitter power (Note 4)	AT\$SB $=0$		0.16		C
QSFX_BITDL_14	Charge to send a bit with downlink receive, nominal transmitter power (Note 4)	AT\$SB $=0,1$		0.44		C
QSFX_LFR_14	Charge to send the longest possible Sigfox frame (12 byte), nominal transmitter power (Note 4)	AT\$SF = 00112233445566778899aabb		0.29		C
QSFX_LFRDL_14	Charge to send the longest possible Sigfox frame (12 byte) with downlink receive, nominal transmitter power (Note 4)	AT\$SF = 00112233445566778899aabb, 1		0.57		C
$I_{\text {TXMOD14AVG }}$	Modulated Transmitter Current (Note 5)	$P_{\text {out }}=13 \mathrm{dBm}$; average		45		mA

2. If VDD_IO ramps cannot be guaranteed, an external reset circuit is recommended, see the AX8052 Application Note: Power On Reset.
3. 20 MHz Fast RC oscillator, voltage conditioning and supervisory circuit running.
4. Power setting 14 , which gives 13 dBm typical power at nominal temperature.
5. Current consumption value is given for a matching network that is optimized for maximum power (setting 14, also nominal setting).

Typical Current Waveform

Figure 3. Typical Current Waveform for a Maximum Length Frame with Downlink Receive at Nominal Transmitter Power

Battery Life Example

- 2 AAA Alkaline batteries in series
- One OOB frame transmitter per day at nominal transmitter power ($\mathrm{P}_{\text {out }}=13 \mathrm{dBm}$ typical)
- Four maximum length frames with downlink receive per day at nominal transmitter power ($\mathrm{P}_{\text {out }}=13 \mathrm{dBm}$ typical $)$
- Device in Sleep
- Neglecting battery self-discharge

2 AAA alkaline capacity	$1500 \mathrm{mAh} \times 3600 \mathrm{~s} / \mathrm{h}$	5400 C
Sleep charge per day	$1.2 \mu \mathrm{~A} \times 86400 \mathrm{~s}$	$0.10 \mathrm{C} / \mathrm{day}$
OOB frame transmission		$0.24 \mathrm{C} / \mathrm{day}$
Frame transmission with downlink	$4 \times 0.57 \mathrm{C} /$ day	$2.28 \mathrm{C} / \mathrm{day}$
Total Charge consumption		$2.62 \mathrm{C} / \mathrm{day}$
Battery life		5.6 Years

Table 5. LOGIC

Symbol	Description	Condition	Min	Typ	Max	Units

DIGITAL INPUTS

$\mathrm{V}_{\mathrm{T}_{+}}$	Schmitt trigger low to high threshold point	VDD_IO $=3.3 \mathrm{~V}$		1.55		V
$\mathrm{~V}_{\mathrm{T}-}$	Schmitt trigger high to low threshold point			1.25		V
$\mathrm{~V}_{\mathrm{IL}}$	Input voltage, low				0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Input voltage, high		2.0			V
$\mathrm{~V}_{\text {IPA }}$	Input voltage range, GPIO[3:0] and GPIO[13:12]		-0.5		$\mathrm{VDD}, 10$	V
$\mathrm{~V}_{\text {IPBC }}$	Input voltage range, GPIO[9:4], UARTRX			-0.5		5.5
I_{L}	Input leakage current		-10		10	$\mu \mathrm{~A}$
$\mathrm{R}_{\text {PU }}$	Programmable Pull-Up Resistance			65		$\mathrm{k} \Omega$

DIGITAL OUTPUTS

I_{OH}	Output Current, high GPIO[14:0], UARTTX, TXLED, RXLED, TXLED, CPULED	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$	8	mA	
I_{OL}	Output Current, low GPIO[14:0], UARTTX, TXLED, RXLED, TXLED, CPULED	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	8	mA	
I_{OZ}	Tri-state output leakage current		-10		

AC Characteristics

Table 6. TRANSMITTER
(Conditions for transmitter specifications unless otherwise specified are for DVK-SIP-SFEU-1-GVK hardware configuration and at 868.130 MHz frequency.)

Symbol	Description	Condition	Min	Typ	Max	Units
SBR	Signal bit rate			100		bps
PTX ${ }_{\text {min }}$	Lowest Transmitter output power (Note 6)	AT\$CW=868130000,1,0		-1		dBm
PTX ${ }_{\text {max }}$	Highest Transmitter output power (Note 6)	AT\$CW=868130000,1,14		13		dBm
PTX ${ }_{\text {step }}$	Programming step size output power			1		dB
dTX ${ }_{\text {temp }}$	Transmitter power variation vs. temperature	$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		± 0.8		dB
$\mathrm{dT}^{\text {X }}$ Vdd	Transmitter power variation vs. VDD_IO	2.1 to 3.6 V		± 0.03		dB
PTX ${ }_{\text {harm2 }}$	Emission @ $2^{\text {nd }}$ harmonic			-58		dBc
PTX ${ }_{\text {harm3 }}$	Emission @ 3 ${ }^{\text {rd }}$ harmonic			-80		

6. The output power of the AX-SIP-SFEU / AX-SIP-SFEU-API can be programmed in 1 dB steps, by changing transmitter power setting from $0-14$. The lowest power setting is 0 , which gives -1 dBm typical power at nominal temperature. The highest power setting is 14 , which gives 13 dBm typical power at nominal temperature and close to 14 dBm typical power at minimum temperature.

AX-SIP-SFEU, AX-SIP-SFEU-API

Figure 4. Typical Spectrum with Harmonics at Nominal Output Power

Table 7. RECEIVER
(Conditions for receiver specifications unless otherwise specified are for DVK-SIP-SFEU-1-GEVK hardware configuration and at 869.525 MHz frequency.)

Symbol	Description	Condition	Min	Typ	Max	Units
SBR	Signal bit rate			600		bps
ISber868	Sensitivity	Evaluated at BER > 10^{-3}. AT command used: AT\$PN=4,5		-125		dBm
BLK ${ }_{\text {2M-868 }}$	Blocking level at $\pm 2 \mathrm{MHz}$ offset	Evaluated at $\mathrm{BER}>10^{-3}$. Wanted signal is +3 dB above the typical sensitivity, the blocker signal is CW. AT command used: AT\$PN=4,5.		-53		dBm
BLK 10M-868	Blocking level at $\pm 10 \mathrm{MHz}$ offset	Evaluated at $\mathrm{BER}>10^{-3}$. Wanted signal is +3 dB above the typical sensitivity, the blocker signal is CW. AT command used: AT\$PN=4,5.		-32		dBm

Table 8. ADC/TEMPERATURE SENSOR

Symbol	Description	Condition	Min	Typ	Max	Units
ADCRES	ADC resolution			10		Bits
V ${ }_{\text {AdCREF }}$	ADC reference voltage		0.95	1	1.05	V
$\mathrm{Z}_{\text {ADC00 }}$	Input capacitance				2.5	pF
DNL	Differential nonlinearity			± 1		LSB
INL	Integral nonlinearity			± 1		LSB
OFF	Offset			3		LSB
GAIN_ERR	Gain error			0.8		\%

ADC IN DIFFERENTIAL MODE

$\mathrm{V}_{\text {ABS_DIFF }}$	Absolute voltages \& common mode voltage in differential mode at each input		0		VDD_IO	V
$\mathrm{V}_{\text {FS_DIFF01 }}$	Full swing input for differential signals	Gain $\times 1$	-500		500	mV
		Gain $\times 10$	-50		50	mV

ADC IN SINGLE ENDED MODE

$\mathrm{V}_{\text {MID_SE }}$	Mid code input voltage in single ended mode			0.5		V
$\mathrm{~V}_{\text {IN_SE00 }}$	Input voltage in single ended mode		0		VDD_IO	V
$\mathrm{V}_{\text {FS_SE01 }}$	Full swing input for single ended signals	Gain $\times 1$	0		1	V

TEMPERATURE SENSOR

$T_{\text {RNG }}$	Temperature range	AT\$T?	-30		85
$T_{\text {ACC }}$	Typical temperature sensor accuracy (Note 7)	AT\$T?	${ }^{\circ} \mathrm{C}$		

7. Not guaranteed, value provided for information only and results may vary as this temperature sensor is not calibrated.

COMMAND INTERFACE

General Information

The chapter "Command Interface" is a documentation of the AT-Command set for devices which do not have an API-interface. To see whether the device is capable of receiving AT-Commands, please refer to the table "Device Versions". If the device has been shipped with the API-Interface, please refer to the SW manual and "apiexample" code delivered with AX-SIP-SF-LIB-1-GEVK for an introduction on how to setup a project and how to use the API-Interface.

Serial Parameters: 9600, 8, N, 1

The AX-SIP-SFEU uses the UART (pins UARTTX, UARTRX) to communicate with a host and uses a bitrate of 9600 baud, no parity, 8 data bits and one stop bit.

Power Modes

AX-SIP-SFEU, AX-SIP-SFEU-API

Standby

After Power-Up and after finishing a Sigfox transmission, AX-SIP-SFEU enters Standby mode. In Standby mode, AX-SIP-SFEU listens on the UART for commands from the host. Also, OOB frames are transmitted whenever the OOB timer fires. To conserve power, the AX-SIP-SFEU can be put into Sleep or turned off (Deep Sleep) completely.

Sleep

The command $\mathbf{A T} \mathbf{\$ P}=\mathbf{1}$ is used to put the AX-SIP-SFEU into Sleep mode. In this mode, only the wakeup timer for out-of-band messages is still running. To wake the AX-SIP-SFEU up from Sleep mode toggle the serial UARTRX pin, e.g. by sending a break (break is an RS232 framing violation, i.e. at least 10 bit durations low). When an Out of Band (OOB) message is due, AX-SIP-SFEU automatically wakes up to transmit the message, and then returns to Sleep mode.

Deep Sleep

In Deep Sleep mode, the AX-SIP-SFEU is completely turned off and only draws negligible leakage current.

Deep Sleep mode can be activated with $\mathbf{A T} \mathbf{\$ P}=\mathbf{2}$. To wake-up from Deep Sleep mode, GPIO9 is pulled to GND.

When using Deep Sleep mode, keep two things in mind: Everything is turned off, timers are not running at all and all settings will be lost (use AT\$WR to save settings to flash before entering Deep Sleep mode). Out-of-band messages will therefore not be sent. The pins states are frozen in Deep Sleep mode. The user must ensure that this will not result in condition which would draw a lot of current.

AT Commands

Numerical Syntax

```
hexdigit ::= [0-9A-Fa-f]
Hexnum ::= "0x" hexdigit+
decnum ::= "0" | [1-9] [0-9]*
octnum ::= "0" [0-7]+
binnum ::= "0b" [01]+
bit ::= [01]
optnum ::= "-1"
Frame ::= (hexdigit hexdigit)+
uint ::= hexnum | decnum | octnum | binnum
uint_opt ::= uint | optnum
```


Command Syntax

A command starts with 'AT' (everything is case sensitive!), continues with the actual command followed by parameters (if any) and ends with any kind of whitespace (space, tab, newline etc.)

If incorrect syntax is detected ("parsing error") all input is ignored up until the next whitespace character.

Also note that any number can be entered in any format (Hexadecimal, Decimal, Octal and binary) by adding the corresponding prefix (' 0 x ', ' 0 ', ' 0 b '). The only exception is the 'Send Frame' command (AT\$SF) which expects a list of hexadecimal digits without any prefix.

Return Codes

A successful command execution is indicated by sending 'OK'. If a command returns a value (e.g. by querying a register) only the value is returned.

Examples

Bold text is sent to $\mathrm{AX}-\mathrm{SIP}-\mathrm{SFEU}$. AT\$I=0
AX-SF 1.1-RC1
Here, we execute command 'I' to query some general information.

AT\$SF=aabb1234

OK
This sends a Sigfox frame containing $\{0 \mathrm{xAA}: 0 \mathrm{xBB}$: 0×12 : $0 \times 34\}$ without waiting for a response telegram.

AT\$SF=0011223344,1
 OK
 RX=AA BB CC DD

This sends a Sigfox frame containing $\{0 \times 00: 0 \times 11: 0 \times 22$: $0 \times 33: 0 \times 44\}$, then waits for a downlink response telegram, which in this example contains $\{0 x A A: 0 x B B: 0 x C C$: $0 x D D\}$.

AT\$CB=0xAA,1

OK
The 'CB' command sends out a continuous pattern of bits, in this case $0 x A A=0 b 10101010$.

AT\$P=1

OK
This transitions the device into sleep mode. Out-of-band transmissions will still be triggered. The UART is powered down. The device can be woken up by a low level on the UART signal, i.e. by sending break.

Table 9. COMMANDS

Command	Name	Description
AT	Dummy Command	Just returns 'OK' and does nothing else. Can be used to check communication.
AT\$SB=bit[, bit]	Send Bit	Send a bit status (0 or 1). Optional bit flag indicates if AX-SIP-SFEU should receive a downlink frame.
AT\$SF=frame[,bit]	Send Frame	Send payload data, 1 to 12 bytes. Optional bit flag indicates if AX-SIP-SFEU should receive a downlink frame.
AT\$SO	Manually send out of band message	Send the out-of-band message.
AT\$TR?	Get the transmit repeat	Returns the number of transmit repeats. Default: 2
AT\$TR=?	Get transmit repeat range	Returns the allowed range of transmit repeats.
AT\$TR=uint	Set transmit repeat	Sets the transmit repeat, sets only for transmit with downlink frame.
ATSuint?	Get Register	Query a specific configuration register's value. See Table 10 "Registers" for a list of registers.
ATSuint=int	Set Register	Change a configuration register.
ATSuint=?	Get Register Range	Returns the allowed range of the register values.
AT\$IF=uint	Set TX Frequency	Set the output carrier macro channel for Sigfox frames.
AT\$IF?	Get TX Frequency	Get the currently chosen TX frequency.
AT\$DR=uint	Set RX Frequency	Set the reception carrier macro channel for Sigfox frames.
AT\$DR?	Get RX Frequency	Get the currently chosen RX frequency.
AT\$CW=uint,bit[,uint_opt]	Continuous Wave	To run emission tests for Sigfox certification it is necessary to send a continuous wave, i.e. just the base frequency without any modulation. Parameters:
AT\$CB=uint_opt,bit	Test Mode: TX constant byte	For emission testing it is useful to send a specific bit pattern. The first parameter specifies the byte to send. Use ' -1 ' for a (pseudo-)random pattern. Parameters:
AT\$T?	Get Temperature	Measure internal temperature and return it in $1 / 10^{\text {th }}$ of a degree Celsius.
AT\$V?	Get Voltages	Return current voltage and voltage measured during the last transmission in mV .

Table 9. COMMANDS (continued)

Command	Name	Description
AT\$I=uint	Information	Display various product information: 0: Software Name \& Version Example Response: AX-SF 1.1-RC1 1: Contact Details Example Response: onhelp@onsemi.com 2: Silicon revision lower byte Example Response: 90 3: Silicon revision upper byte Example Response: 51 4: Major Firmware Version Example Response: 1 5: Minor Firmware Version Example Response: 1 7: Firmware Variant (Frequency Band etc. (EU/US)) Example Response: RC1 8: Firmware VCS Version Example Response: 0 9: Sigfox Library Version Example Response: UDL1-1.8.9 10: Device ID Example Response: 00012345 11: PAC Example Response: 0123456789ABCDEF
AT\$P=uint	Set Power Mode	To conserve power, the AX-SIP-SFEU can be put to sleep manually. Depending on power mode, you will be responsible for waking up the AX-SIP-SFEU again! 0: software reset (settings will be reset to values in flash) 1: sleep (send a break to wake up) 2: deep sleep (toggle GPIO9 or RESET_N pin to wake up; the AX-SIP-SFEU is not running and all settings will be reset!)
AT\$WR	Save Config	Write all settings to flash (RX/TX frequencies, registers) so they survive reset/deep sleep or loss of power. Use $A T \$ P=0$ to reset the AX-SIP-SFEU and load settings from flash.
AT:Pn?	Get GPIO Pin	Return the setting of the GPIO Pin $n ; n$ can range from 0 to 14. A character string is returned describing the mode of the pin, followed by the actual value. If the pin is configured as analog pin, then the voltage (range $0 \ldots 1 \mathrm{~V}$) is returned. The mode characters have the following meaning: The default mode after exiting reset is U on all GPIO pins.

Table 9. COMMANDS (continued)

Command	Name	Description
AT:Pn=?	Get GPIO Pin Range	Print a list of possible modes for a pin. The table below lists the response.
AT:Pn=mode	Set GPIO Pin	Set the GPIO pin mode. For a list of the modes see the command AT:Pn?
AT:ADC Pn[-Pn[(1V\|10V)]]?	Get GPIO Pin Analog Voltage	Measure the voltage applied to a GPIO pin. The command also allows measurement of the voltage difference across two GPIO pins. In differential mode, the full scale range may also be specified as 1 V or 10 V . Note however that the pin input voltages must not exceed the range 0 ...VDD_IO. The command returns the result as fraction of the full scale range (1 V if none is specified). The GPIO pins referenced should be initialized to analog mode before issuing this command.
AT: $\operatorname{SPI[(A\|B\|C\|D)]=bytes~}$	SPI Transaction	This command clocks out bytes on the SPI port. The clock frequency is 312.5 kHz . The command returns the bytes read on MISO during output. Optionally the clocking mode may be specified (default is A):
AT:CLK=freq,reffreq	Set Clock Generator	Output a square wave on the pin(s) set to T mode. The frequency of the square wave is (freq / 2^{16}) \times reffreq. Possible values for reffreq are 20000000, 10000000, 5000000, 2500000, 1250000, 625000, 312500, 156250. Possible values for freq are 0... 65535.
AT:CLK=OFF	Turn off Clock Generator	Switch off the clock generator
AT:CLK?	Get Clock Generator	Return the settings of the clock generator. Two numbers are returned, freq and reffreq.
AT:DAC=value	Set $\Sigma \triangle$ DAC	Output a $\Sigma \Delta$ DAC value on the pin(s) set to T mode. Parameter value may be in the range -32768...32767. The average output voltage is $\left(1 / 2+\right.$ value $\left./ 2^{17}\right) \times$ VDD. An external low pass filter is needed to get smooth output voltages. The modulation frequency is 20 MHz . A possible low pass filter choice is a simple RC low pass filter with $\mathrm{R}=10 \mathrm{k} \Omega$ and $\mathrm{C}=1 \mu \mathrm{~F}$.

Table 9. COMMANDS (continued)

| Command | Name | Description |
| :--- | :--- | :--- | :--- | :--- |
| AT:DAC=OFF | Turn off $\Sigma \Delta$ DAC | Switch off the DAC |

Table 10. REGISTERS

Number	Name	Description	Default	Range	Units
300	Out Of Band Period	AX-SIP-SFEU sends periodic static messages to indicate that it is alive. Set to 0 to disable.	24	$0-24$	hours
302	Power Level	The output power of the radio. Note: this set- ting is used for all TX modes except AT\$CW.	14	$0-14$	0: -1dBm $14: 13$ dBm
410	Encryption Key Configuration	Set to zero for normal operation. Set to one for use with the Sigfox Network Emulator Kit (SNEK).	0	$0-1$	0: private key $1:$ public key
411	Specific ID and Key for certification	Set to zero for use of regular device ID and key. Set to one to use specific ID and key for test sample devices for Sigfox certification.	0	$0-1$	0: regular sample $1:$ test sample
500	RSSI Offset	RSSI offset value can be applied to fine tune the RSSI level that the device reports.	0	$-128 \ldots 127$	dB

APPLICATION INFORMATION

Certification

The AX-SIP-SFEU and AX-SIP-SFEU-API are already Sigfox Verified and CE certified by ON Semiconductor.

Customers using this SiP, as with any product containing a radio, have the responsibility to ensure, at a product level, that their usage of this product complies with regulatory requirements where it's operated.

And for Sigfox products, Sigfox requires a product level certification called Sigfox Ready. The customer is
encouraged to plan for regulatory and Sigfox certification early in the development process to avoid issues closer to their product release.

Sigfox has extensive support online, visit https://build.sigfox.com for details about Sigfox Ready certification and many other topics.
For local regulatory guidance, refer to the local government's websites. For the EU, visit https://ec.europa.eu. In particular the Radio Equipment Directive and CE marking rules apply.

ON Semiconductor is not liable for customer's failure to comply with certification and regulatory obligations.

AX-SIP-SFEU, AX-SIP-SFEU-API

Typical Application Diagrams

Typical AX-SIP-SFEU / AX-SIP-SFEU-API Application Diagram

Figure 5. Typical Application Diagram

AX-SIP-SFEU, AX-SIP-SFEU-API

SIP38 RECOMMENDED PAD LAYOUT

1. PCB footprint and DFM recommendations are shown in Figure 6. In particular be aware of the spacing " F " to avoid shorting pads to the conductive conformal shield coating the SiP.
2. Thermal vias should be used around the PCB thermal pads (middle ground pads) to improve thermal conductivity from the device to a copper ground plane area on the reverse side of the printed circuit board. The number of vias depends
on the package thermal requirements, as determined by thermal simulation or actual testing.
3. Increasing the number of vias through the printed circuit board will improve the thermal conductivity to the reverse side ground plane and external heat sink. In general, adding more metal through the PC board under the SiP will improve operational heat transfer, but will require careful attention to uniform heating of the board during assembly.

$\mathrm{A}=$ Clearance from PCB thermal pad to solder mask opening, 0.0635 mm minimum
$B=$ Clearance from edge of PCB thermal pad to PCB land, 0.2 mm minimum
$C=$ Clearance from PCB land edge to solder mask opening to be as tight as possible to ensure that some solder mask remains between PCB pads
$D=P C B$ land length $=$ SIP solder pad length +0.1 mm
$E=P C B$ land width $=$ SIP solder pad width +0.1 mm
$F=$ Clearance from solder mask opening to the edge of the package,
0.1 mm minimum to avoid shorts to the package metal shielding

Figure 6. PCB Land and Solder Mask Recommendations

Device Information

The following device information can be queried using the AT-Commands AT $\$ \mathrm{I}=4$, AT $\$ \mathrm{I}=5$ for the firmware version and $\mathrm{AT} \$ \mathrm{I}=2, \mathrm{AT} \$ \mathrm{I}=3$ for the hardware version.

Table 11. DEVICE VERSIONS

Product	Part Number	Firmware Version		Hardware Version	
		$[1]$	$[0]$	$[1]$	
AX-SIP-SFEU	AX-SIP-SFEU-1-01-TX30	0×01	0×01	0×90	0×51
AX-SIP-SFEU-API	AX-SIP-SFEU-API-1-01-TX30	0×01	0×01	0×90	0×51

TOP VIEW

NOTE 3

GENERIC
MARKING DIAGRAM*

A = Assembly Location
WL = Wafer Lot YY $=$ Year WW = Work Week

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b and b 1 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.

DETAIL B

DETAIL A

	MILLIMETERS				
DIM	MIN.	NOM.	MAX.		
A	---	---	0.996		
A1	---	---	0.05		
A2	---	0.70	0.73		
A3	---	0.24	0.28		
b	0.20	0.25	0.30		
b1	0.90	0.95	1.00		
D	8.90	9.00	9.10		
E	6.90	7.00	7.10		
e	0.65 BSC				
e1	2.00 BSC				
K	1.42 REF				
L	0.55	0.60			0.65
L1	0.20 REF				

RECOMMENDED
MOUNTING FOOTPRINT
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON77413G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versins are

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Transceiver category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
ADRV9026BBCZ ADRV9026-MB/PCBZ ADL6316ACCZ ADL6316ACCZ-R7 ADL6317ACCZ SYN480R VI4455 NRF51822-CEAA-R (E0) ADF7242BCPZ-RL AT86RF232-ZX ADF7021-NBCPZ-RL Si4055-C2A-GM ADRV9008BBCZ-2 ADF7030-1BSTZN-RL AD9874ABSTRL ADF7020-1BCPZ-RL7 ADF7020BCPZ ADF7020BCPZ-RL ADF7021BCPZ ADF7021BCPZ-RL ADF7021BCPZ-RL7 ADF7021-NBCPZ ADF7021-VBCPZ ADF7023-JBCPZ ADF7025BCPZ ADF7241BCPZ ADRV9029BBCZ AT86RF231-ZU AT86RF232ZXR AT86RF233-ZU ATA8520-GHQW FM11NC08S MC3361BPL-D16-T SX1236IMLTRT HT9170D BGT24MTR11E6327XUMA1 BGT24MTR12E6327XUMA1 MAX2510EEI + MAX2511EEI + MAX2510EEI+T MAX2832ETM + MAX7030LATJ+ SX1212IWLTRT MAX9947ETE+ AT86RF212B-ZU ATA5429-PLSW NRF24LE1-O17Q32-R AT86RF233-ZUR nRF24L01P-R SI4463-C2A-GM

