BAS19L, BAS20L, BAS21L, BAS21DW5

High Voltage
 Switching Diode

Features

- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant
- S and NSV Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Continuous Reverse Voltage BAS19 BAS20 BAS21	V_{R}	$\begin{aligned} & 120 \\ & 200 \\ & 250 \end{aligned}$	Vdc
Repetitive Peak Reverse Voltage BAS19 BAS20 BAS21	$\mathrm{V}_{\text {RRM }}$	$\begin{aligned} & 120 \\ & 200 \\ & 250 \end{aligned}$	Vdc
Continuous Forward Current	$\mathrm{I}_{\text {F }}$	200	mAdc
Peak Forward Surge Current (1/2 Cycle, Sine Wave, 60 Hz)	$\mathrm{I}_{\text {FSM }}$	2	A
Repetitive Peak Forward Current (Pulse Train: $\mathrm{T}_{\mathrm{ON}}=1 \mathrm{~s}, \mathrm{~T}_{\mathrm{OFF}}=0.5 \mathrm{~s}$)	$\mathrm{I}_{\text {FRM }}$	0.6	A
Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation (Note 1)	P_{D}	385	mW
Electrostatic Discharge	ESD	$\begin{aligned} & \hline \mathrm{HM}<500 \\ & \mathrm{MM}<400 \end{aligned}$	$\overline{\mathrm{V}}$ V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Mounted on FR-5 Board $=1.0 \times 0.75 \times 0.062$ in.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

HIGH VOLTAGE SWITCHING DIODE

MARKING DIAGRAMS

SOT-23 (TO-236)

CASE 318
STYLE 8

SC-88A (SOT-353)

CASE 419A

x	$=P$, R, or S
P	$=$ BAS19L
R	$=$ BAS20L
S	$=$ BAS21L or BAS21DW5
M	$=$ Date Code
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
*Date Code orientation and/or overbar may vary depending upon the manufacturing location.

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

THERMAL CHARACTERISTICS (SOT-23)

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 2) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	225	mW
Thermal Resistance Junction-to-Ambient (SOT-23)	$\mathrm{R}_{\theta J \mathrm{~A}}$	556	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Total Device Dissipation Alumina Substrate (Note 3) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above 25${ }^{\circ} \mathrm{C}$	P_{D}	300	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction-to-Ambient	$\mathrm{R}_{\theta J \mathrm{~A}}$	417	mW
Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J},}, \mathrm{T}_{\mathrm{stg}}$	$-55 \mathrm{to}+150$	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS (SC-88A)

Characteristic	Symbol	Max	Unit
Power Dissipation (Note 4)	P_{D}	385	mW
Thermal Resistance -	$\mathrm{R}_{\theta \mathrm{JA}}$		
Junction-to-Ambient		328	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Derate Above 25			
Maximum Junction Temperature		$\mathrm{mW} /{ }^{\circ} \mathrm{C}$	
Operating Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{Jmax}}$	150	${ }^{\circ} \mathrm{C}$
	$\mathrm{T}_{\mathrm{J},}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

2. $F R-5=1.0 \times 0.75 \times 0.062 \mathrm{in}$.
3. Alumina $=0.4 \times 0.3 \times 0.024 \mathrm{in} .99 .5 \%$ alumina.
4. Mounted on FR-5 Board $=1.0 \times 0.75 \times 0.062 \mathrm{in}$.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Reverse Voltage Leakage Current $\left(V_{R}=100 \mathrm{Vdc}\right)$ BAS19 $\left(V_{R}=150 \mathrm{Vdc}\right)$ BAS20 $\left(V_{R}=200 \mathrm{Vdc}\right)$ BAS21 $\left(V_{R}=100 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}\right)$ BAS19 $\left(\mathrm{V}_{\mathrm{R}}=150 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}\right)$ BAS20 $\left(\mathrm{V}_{\mathrm{R}}=200 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}\right)$ BAS21	I_{R}		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\mu \mathrm{Adc}$
Reverse Breakdown Voltage $\left(I_{\text {BR }}=100 \mu \mathrm{AdC}\right)$ BAS19 $\left(I_{\text {BR }}=100 \mu \mathrm{AdC}\right)$ BAS20 $($ IBR $=100 \mu \mathrm{AdC})$ BAS21	$\mathrm{V}_{\text {(BR) }}$	$\begin{aligned} & 120 \\ & 200 \\ & 250 \end{aligned}$		Vdc
Forward Voltage $\left(\mathrm{I}_{\mathrm{F}}=100 \mathrm{mAdc}\right)$ ($\mathrm{I}_{\mathrm{F}}=200 \mathrm{mAdc}$)	V_{F}	-	$\begin{gathered} 1.0 \\ 1.25 \end{gathered}$	Vdc
Diode Capacitance ($\mathrm{V}_{\mathrm{R}}=0, \mathrm{f}=1.0 \mathrm{MHz}$)	C_{D}	-	5.0	pF
Reverse Recovery Time ($\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{R}}=30 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{R}(\mathrm{REC})}=3.0 \mathrm{mAdc}, \mathrm{R}_{\mathrm{L}}=100$)	t_{rr}	-	50	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

BAS19L, BAS20L, BAS21L, BAS21DW5

Notes: 1. A $2.0 \mathrm{k} \Omega$ variable resistor adjusted for a Forward Current (I_{F}) of 30 mA .
2. Input pulse is adjusted so $\mathrm{I}_{\mathrm{R} \text { (peak) }}$ is equal to 30 mA .
3. $t_{p} \geqslant t_{r r}$

Figure 1. Recovery Time Equivalent Test Circuit

Figure 2. V_{F} vs. I_{F}

Figure 3. $\mathbf{I}_{\mathbf{R}}$ vs. $\mathbf{V}_{\mathbf{R}}$

Figure 4. Capacitance

Figure 5. Forward Surge Current

BAS19L, BAS20L, BAS21L, BAS21DW5

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
BAS19LT1G	$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	3000 / Tape \& Reel
BAS19LT3G	$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	10000 / Tape \& Reel
NSVBAS19LT1G*	$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	3000 / Tape \& Reel
BAS20LT1G	$\begin{gathered} \hline \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	3000 / Tape \& Reel
BAS20LT3G	$\begin{aligned} & \text { SOT-23 } \\ & \text { (Pb-Free) } \end{aligned}$	10000 / Tape \& Reel
NSVBAS20LT3G*	$\begin{aligned} & \text { SOT-23 } \\ & \text { (Pb-Free) } \end{aligned}$	10000 / Tape \& Reel
SBAS20LT1G*	$\begin{aligned} & \text { SOT-23 } \\ & \text { (Pb-Free) } \end{aligned}$	3000 / Tape \& Reel
BAS21LT1G	$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	3000 / Tape \& Reel
SBAS21LT1G*	$\begin{aligned} & \text { SOT-23 } \\ & \text { (Pb-Free) } \end{aligned}$	3000 / Tape \& Reel
BAS21LT3G	$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	10000 / Tape \& Reel
SBAS21LT3G*	$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	10000 / Tape \& Reel
BAS21DW5T1G	$\begin{gathered} \text { SC-88A } \\ \text { (Pb-Free) } \end{gathered}$	3000 / Tape \& Reel
SBAS21DW5T1G*	$\begin{gathered} \hline \text { SC-88A } \\ \text { (Pb-Free) } \end{gathered}$	3000 / Tape \& Reel
SBAS21DW5T3G*	$\begin{gathered} \text { SC-88A } \\ \text { (Pb-Free) } \end{gathered}$	10000 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*S and NSV Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

SOT-23 (TO-236)
CASE 318-08
ISSUE AS
DATE 30 JAN 2018

SCALE 4:1

NOTES:
IMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
\mathbf{c}	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
$\mathbf{H E}_{\mathbf{E}}$	2.10	2.40	2.64	0.083	0.094	0.104
T	0°	---	10°	0°	---	10°

GENERIC
MARKING DIAGRAM*

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS

XXX = Specific Device Code
M = Date Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

[^0] rights of others.

SCALE 2:1

SOLDER FOOTPRINT

STYLE 1:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR

STYLE 6:
PIN 1. EMITTER 2
2. BASE 2
3. EMITTER 1
4. COLLECTOR
$\begin{array}{ll}\text { 4. COLLECTOR } & \text { 4. COLLECTOR } \\ \text { 5. COLLECTOR 2/BASE } 1 & \text { 5. COLLECTOR }\end{array}$

STYLE 2:
PIN 1. ANODE
2. EMITTER
3. BASE
4. COLLECTOR
5. CATHODE

STYLE 7:
PIN 1. BASE
2. EMITTER
3. BASE

STYLE 3
PIN 1. ANODE 1
2. N / C
3. ANODE 2
4. CATHODE
5. CATHODE 1

STYLE $8:$
PIN 1. CATHODE
2. COLLECTOR
3. N / C
4. BASE
5. EMITTER

STYLE 4:
PIN 1. SOURCE 1
2. DRAIN $1 / 2$
3. SOURCE
4. GATE 1 5. GATE 2

STYLE 9:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. ANODE
5. ANODE

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A-01 OBSOLETE. NEW STANDARD 419A-02.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
A	0.071	0.087	1.80	2.20		
B	0.045	0.053	1.15	1.35		
C	0.031	0.043	0.80	1.10		
D	0.004	0.012	0.10			
G	0.026		BSC	0.65		BSC
H	---		0.004	--		0.10
J	0.004	0.010	0.10	0.25		
K	0.004		0.012	0.10		0.30
N	0.008 REF		0.20			
REF						
S	0.079		0.087	2.00		2.20

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code
$\mathrm{M}=$ Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)
*This infomration is generic. Please refer to device data sheet for actual part marking.

DOCUMENT NUMBER:	98ASB42984B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
STATUS:	ON SEMICONDUCTOR STANDARD		

[^1]ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ON Semiconductor manufacturer:
Other Similar products are found below :
1.5SMC82AT3G 74LCX574WM STK621-068C-E KAF-0402-ABA-CD-B2 NBXSBA017LN1TAG KAF-3200-ABA-CP-B2 STK621-728S-

E AMIS30621AUA STK531U340A-E STK760-304-E FJAF6810DTU DBD250G STK621-713-E TIP115 LB11847-E
NBXHBA017LN1TAG LV8736V-MPB-H NCP694H12HT1G LA4631VC-XE CAT1025WI-25-G NDF04N60ZG-001 LA78040B-S-E NGTB30N120IHLWG LA6584M-MPB-E NVB60N06T4G LA6245P-CL-TLM-E STK621-043D-E BTA30H-600CW3G NBXHBA017LNHTAG P6SMB100AT3G NCP1129AP100G LV8406T-TLM-E MC100EL13DWG NGTB30N60SWG FW217A-TL-2WX FGPF4533 MC33201DG KA78L05AZTA KA378R33TU FST3126MX LV4904V-MPB-E STK672-400 SBM30-03-TR-E $\underline{\text { NCP1398BDR2G BTA25H-600CW3G LC89057W-VF4A-E NGB8206ANTF4G NB7VQ58MMNG CPH6531-TL-E NCP4683DSQ28T1G }}$

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

[^1]: ON Semiconductor and (UN are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

