BAW56M3T5G

Dual Switching Diode Common Anode

The BAW56M3T5G device is a spin-off of our popular SOT-23 three-leaded device. It is designed for switching applications and is housed in the SOT-723 surface mount package. This device is ideal for low-power surface mount applications where board space is at a premium.

Features

- Reduces Board Space
- This is a Halide-Free Device
- This is a $\mathrm{Pb}-$ Free Device

MAXIMUM RATINGS (EACH DIODE)

Rating	Symbol	Value	Unit
Reverse Voltage	V_{R}	75	Vdc
Forward Current	I_{F}	200	mAdc
Peak Forward Surge Current	$\mathrm{I}_{\mathrm{FM}(\text { surge })}$	500	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR -5 Board (Note 1) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	265	mW
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	470	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Total Device Dissipation Alumina Substrate, (Note 2) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	640	mW
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	195	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. $\mathrm{FR}-5=1.0 \times 0.75 \times 0.062 \mathrm{in}$.
2. Alumina $=0.4 \times 0.3 \times 0.024 \mathrm{in} .99 .5 \%$ alumina.

ON Semiconductor ${ }^{\oplus}$

http://onsemi.com

70 V
 DUAL COMMON ANODE SWITCHING DIODE

ANODE

ORDERING INFORMATION

Device	Package	Shipping †
BAW56M3T5G	SOT-723 (Pb-Free)	8000/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

BAW56M3T5G

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) (Each Diode)

Characteristic		Symbol	Min	Max	Unit
Reverse Breakdown Voltage	$\left.{ }_{(1}(\mathrm{BR})=100 \mu \mathrm{~A}\right)$	$\mathrm{V}_{\text {(BR) }}$	70	-	V
Reverse Voltage Leakage Current	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{R}}=70 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{R}}=70 \mathrm{~V}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C}\right) \end{aligned}$	I_{R}		$\begin{aligned} & 30 \\ & 2.5 \\ & 50 \end{aligned}$	$\mu \mathrm{A}$
Diode Capacitance	$\left(\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{D}	-	2.0	pF
Forward Voltage	$\begin{aligned} & \left(I_{F}=1.0 \mathrm{~mA}\right) \\ & \left(I_{F}=10 \mathrm{~mA}\right) \\ & \left(I_{F}=50 \mathrm{~mA}\right) \\ & \left(I_{F}=150 \mathrm{~mA}\right) \end{aligned}$	V_{F}	-	$\begin{gathered} 715 \\ 855 \\ 1000 \\ 1250 \end{gathered}$	mV
Reverse Recovery Time $\left(I_{F}=I_{R}=10 \mathrm{~mA}, I_{R(R E C)}=1.0 \mathrm{~mA}\right)$ (Figure 1)	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	$\mathrm{trr}_{\text {r }}$	-	6.0	ns

Notes: 1. A $2.0 \mathrm{k} \Omega$ variable resistor adjusted for a Forward Current $\left(\mathrm{I}_{\mathrm{F}}\right)$ of 10 mA .
2. Input pulse is adjusted so $\mathrm{I}_{\mathrm{R}(\text { peak })}$ is equal to 10 mA .
3. t_{p} " $\mathrm{tr}_{\mathrm{rr}}$

Figure 1. Recovery Time Equivalent Test Circuit

BAW56M3T5G

Curves Applicable to Each Cathode

Figure 4. Capacitance

TOP VIEW

SIDE VIEW

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. ANODE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. GATE
2. EMITTER	2. N/C	2. ANODE	2. CATHODE	2. SOURCE
3. COLLECTOR	3. CATHODE	3. CATHODE	3. ANODE	3. DRAIN

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD

FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

DIM	MILLIMETERS				
	MIN	NOM	MAX		
A	0.45	0.50	0.55		
b	0.15	0.21	0.27		
b1	0.25	0.31	0.37		
C	0.07	0.12	0.17		
D	1.15	1.20	1.25		
E	0.75	0.80	0.85		
e	0.40 BSC				
H E	1.15	1.20			1.25
L	0.29 REF				
L2	0.15	0.20			0.25

GENERIC MARKING DIAGRAM*

XX	$=$ Specific Device Code
M	$=$ Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

| DOCUMENT NUMBER: | 98AON12989D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-723 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Diodes - General Purpose, Power, Switching category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
RD0306T-H BAV17-TR BAV19-TR 1N3611 NTE156A NTE525 NTE571 NTE574 NTE5804 NTE5806 NTE6244 1SS181-TP
1SS193,LF 1SS400CST2RA SDAA13 SHN2D02FUTW1T1G LS4151GS08 1N4449 1N456A 1N4934-E3/73 1N914B 1N914BTR RFUH20TB3S BAS 28 E6327 BAV199-TP BAW56DWQ-7-F BAW56M3T5G BAW75-TAP MM230L-CAA IDW40E65D1 JAN1N3600
LL4151-GS18 053684A SMMSD4148T3G 707803H NSVDAN222T1G SP000010217 ACDSW4448-HF CDSZC01100-HF
BAV199E6433HTMA1 BAV70M3T5G SMBT2001T1G NTE5801 NTE5800 NTE5808 NTE6240 NTE6248 DLM10C-AT1 BAS28-7
BAW56HDW-13

