BC556B, BC557A, B, C, BC558B

Amplifier Transistors
 PNP Silicon

Features

- $\mathrm{Pb}-$ Free Packages are Available*

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Collector - Emitter Voltage	BC556	$\mathrm{V}_{\mathrm{CEO}}$		Vdc
	$\begin{array}{ll}\text { BC557 }\end{array}$		-65	
	BC558			

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\text {өJC }}$	83.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
 download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor ${ }^{\ominus}$
http://onsemi.com
(1) COLECTOR

MARKING DIAGRAM

xx	$=6 \mathrm{~B}, 7 \mathrm{~A}, 7 \mathrm{~B}, 7 \mathrm{C}$, or 8 B
A	$=$ Assembly Location
Y	$=$ Year
WW	$=$ Work Week
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage $\left(I_{C}=-2.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\begin{aligned} & \text { BC556 } \\ & \text { BC557 } \\ & \text { BC558 } \end{aligned}$	$\mathrm{V}_{\text {(BR) }}$ CEO	$\begin{aligned} & -65 \\ & -45 \\ & -30 \end{aligned}$	-	-	V
$\begin{aligned} & \text { Collector-Base Breakdown Voltage } \\ & \quad\left(I_{C}=-100 \mu \mathrm{Adc}\right) \end{aligned}$	$\begin{aligned} & \text { BC556 } \\ & \text { BC557 } \\ & \text { BC558 } \end{aligned}$	$\mathrm{V}_{\text {(BR) }}$ CBO	$\begin{aligned} & -80 \\ & -50 \\ & -30 \end{aligned}$	-	-	V
Emitter-Base Breakdown Voltage $\left(I_{E}=-100 \mu A d c, I_{C}=0\right)$	$\begin{aligned} & \text { BC556 } \\ & \text { BC557 } \\ & \text { BC558 } \end{aligned}$	$\mathrm{V}_{(\mathrm{BR}) \text { EBO }}$	$\begin{aligned} & -5.0 \\ & -5.0 \\ & -5.0 \end{aligned}$	-	-	V
$\begin{aligned} & \text { Collector-Emitter Leakage Current } \\ & \left(\mathrm{V}_{\text {CES }}=-40 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CES}}=-20 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\text {CES }}=-20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \text { BC556 } \\ & \text { BC557 } \\ & \text { BC558 } \\ & \text { BC556 } \\ & \text { BC557 } \\ & \text { BC558 } \end{aligned}$	$I_{\text {CES }}$	-	$\begin{gathered} -2.0 \\ -2.0 \\ -2.0 \\ - \\ - \\ - \end{gathered}$	$\begin{aligned} & -100 \\ & -100 \\ & -100 \\ & -4.0 \\ & -4.0 \\ & -4.0 \end{aligned}$	nA $\mu \mathrm{A}$

ON CHARACTERISTICS

DC Current Gain $\left(I_{C}=-10 \mu \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=-5.0 \mathrm{~V}\right)$ $\left(I_{C}=-2.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=-5.0 \mathrm{~V}\right)$ $\left(\mathrm{I}_{\mathrm{C}}=-100 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=-5.0 \mathrm{~V}\right)$	A Series Device B Series Devices C Series Devices BC557 A Series Device B Series Devices C Series Devices A Series Device B Series Devices C Series Devices	$\mathrm{h}_{\text {FE }}$	$\begin{gathered} - \\ - \\ - \\ 120 \\ 120 \\ 180 \\ 420 \\ - \\ - \\ - \end{gathered}$	$\begin{gathered} 90 \\ 150 \\ 270 \\ - \\ 170 \\ 290 \\ 500 \\ 120 \\ 180 \\ 300 \end{gathered}$	$\begin{gathered} - \\ - \\ - \\ 800 \\ 220 \\ 460 \\ 800 \\ - \\ - \\ - \end{gathered}$	-
Collector-Emitter Saturation Voltage $\left(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-0.5 \mathrm{mAdc}\right)$ ($\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=$ see Note 1) ($\mathrm{I}_{\mathrm{C}}=-100 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-5.0 \mathrm{mAdc}$)		$\mathrm{V}_{\text {CE(sat) }}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{gathered} -0.075 \\ -0.3 \\ -0.25 \end{gathered}$	$\begin{gathered} -0.3 \\ -0.6 \\ -0.65 \end{gathered}$	V
Base-Emitter Saturation Voltage ($\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-0.5 \mathrm{mAdc}$) $\left(I_{C}=-100 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-5.0 \mathrm{mAdc}\right)$		$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	-	$\begin{aligned} & -0.7 \\ & -1.0 \end{aligned}$	-	V
$\begin{aligned} & \text { Base-Emitter On Voltage } \\ & \text { (} \left.\mathrm{I}_{\mathrm{C}}=-2.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{Vdc}\right) \end{aligned}$		$\mathrm{V}_{\mathrm{BE} \text { (on) }}$	-0.55	$\begin{gathered} -0.62 \\ -0.7 \end{gathered}$	$\begin{gathered} -0.7 \\ -0.82 \end{gathered}$	V

SMALL-SIGNAL CHARACTERISTICS

$\begin{aligned} & \text { Current-Gain - Bandwidth Product } \\ & \quad\left(\mathrm{IC}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}\right) \end{aligned}$	$\begin{aligned} & \text { BC556 } \\ & \text { BC557 } \\ & \text { BC558 } \end{aligned}$	f_{T}	-	$\begin{aligned} & 280 \\ & 320 \\ & 360 \end{aligned}$	-	MHz
$\begin{aligned} & \text { Output Capacitance } \\ & \qquad\left(\mathrm{V}_{\mathrm{CB}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0, f=1.0 \mathrm{MHz}\right) \end{aligned}$		$\mathrm{C}_{\text {ob }}$	-	3.0	6.0	pF
$\begin{aligned} & \text { Noise Figure } \\ & \quad\left(\mathrm{I} \mathrm{C}=-0.2 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{~V},\right. \\ & \left.\mathrm{RS}_{\mathrm{S}}=2.0 \mathrm{k} \Omega, \mathrm{f}=1.0 \mathrm{kHz}, \Delta \mathrm{f}=200 \mathrm{~Hz}\right) \end{aligned}$	$\begin{aligned} & \text { BC556 } \\ & \text { BC557 } \\ & \text { BC558 } \end{aligned}$	NF	-	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	dB
$\begin{aligned} & \text { Small-Signal Current Gain } \\ & \quad\left(\mathrm{I}_{\mathrm{C}}=-2.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{kHz}\right) \end{aligned}$	BC557 A Series Device B Series Devices C Series Devices	$\mathrm{hfe}_{\text {fe }}$	$\begin{aligned} & 125 \\ & 125 \\ & 240 \\ & 450 \\ & \hline \end{aligned}$	- - - -	$\begin{aligned} & 900 \\ & 260 \\ & 500 \\ & 900 \\ & \hline \end{aligned}$	-

1. $\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mAdc}$ on the constant base current characteristics, which yields the point $\mathrm{I}_{\mathrm{C}}=-11 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=-1.0 \mathrm{~V}$.

BC556B, BC557A, B, C, BC558B

BC557/BC558

Figure 1. Normalized DC Current Gain

Figure 3. Collector Saturation Region

Figure 5. Capacitances

Figure 2. "Saturation" and "On" Voltages

Figure 4. Base-Emitter Temperature Coefficient

Figure 6. Current-Gain - Bandwidth Product

BC556B, BC557A, B, C, BC558B

BC556

Figure 7. DC Current Gain

Figure 9. Collector Saturation Region

Figure 11. Capacitance

Figure 8. "On" Voltage

Figure 10. Base-Emitter Temperature Coefficient

Figure 12. Current-Gain - Bandwidth Product

Figure 13. Thermal Response

Figure 14. Active Region - Safe Operating Area

The safe operating area curves indicate $I_{C}-V_{C E}$ limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.
The data of Figure 14 is based upon $T_{J(p k)}=150^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{C}}$ or T_{A} is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $\mathrm{T}_{\mathrm{J}(\mathrm{pk})} \leq 150^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ may be calculated from the data in Figure 13. At high case or ambient temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

BC556B, BC557A, B, C, BC558B

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
BC556BG	$\begin{gathered} \hline \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	5000 Units / Bulk
BC556BZL1G	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Ammo Box
BC557AZL1G	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Ammo Box
BC557BG	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	5000 Units / Bulk
BC557BRL1	TO-92	2000 / Tape \& Reel
BC557BRL1G	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Tape \& Reel
BC557BZL1G	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Ammo Box
BC557CG	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	5000 Units / Bulk
BC557CZL1G	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Ammo Box
BC558BRLG	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Tape \& Reel
BC558BRL1G	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Tape \& Reel
BC558BZL1G	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Ammo Box

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

STRAIGHT LEAD

BENT LEAD

STRAIGHT LEAD

BENT LEAD

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCHES.
3. CONTOUR OF PACKAGE BEYOND DIMENSION RIS UNCONTROLLED.
4. DIMENSION F APPLIES BETWEEN DIMENSIONS P AND L. DIMENSIONS D AND J APPLY BETWEEN DIMENSIONS LAND K MINIMUM. THE LEAD DIMENSIONS ARE UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.175	0.205	4.44	5.21
B	0.290	0.310	7.37	7.87
C	0.125	0.165	3.18	4.19
D	0.018	0.021	0.46	0.53
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
H	0.095	0.105	2.42	2.66
J	0.018	0.024	0.46	0.61
K	0.500	---	12.70	---
L	0.250	--	6.35	---
N	0.080	0.105	2.04	2.66
P	---	0.100	--	2.54
R	0.135	---	3.43	---
V	0.135	---	3.43	--

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCHES
3. CONTOUR OF PACKAGE BEYOND DIMENSION RIS CONTOUR OF PACKA
4. DIMENSION F APPLIES BETWEEN DIMENSIONS P AND L. DIMENSIONS D AND J APPLY BETWEEN DIMENSIONS LAND K MINIMUM. THE LEAD DIMENSIONS ARE UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM.

DIM	INCHES			MILLIMETERS	
	MIN	MAX	MIN	MAX	
	0.175	0.025	4.44	5.21	
	0.290	0.310	7.37	7.87	
C	0.125	0.165	3.18	4.19	
D	0.018	0.021	0.46	0.53	
G	0.094	0.102	2.40	2.80	
J	0.018	0.024	0.46	0.61	
K	0.500	---	12.70	---	
N	0.080	0.105	2.04	2.66	
P	---	0.100	--	2.54	
R	0.135	---	3.43	---	
\mathbf{V}	0.135	---	3.43	---	

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-92 (TO-226) 1 WATT | PAGE 1 OF 2 |

[^0]
TO-92 (TO-226) 1 WATT

CASE 29-10
ISSUE A

STYLE 1:		STYLE 2: PIN 1.		STYLE 3: PIN 1.		STYLE 4: PIN 1.		STYLE 5: PIN 1.	
PIN 1.	EMITTER	PIN 1.	BASE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	DRAIN
2.	BASE	2.	EMITTER	2.	ANODE	2.	CATHODE	2.	SOURCE
3.	COLLECTOR	3.	COLLECTOR	3.	CATHODE	3.	ANODE	3.	GATE
STYLE 6:		STYLE 7:		STYLE 8:		STYLE 9:		STYLE 10:	
PIN 1.	GATE	PIN 1.	SOURCE	PIN 1.	DRAIN	PIN 1.	BASE 1	PIN 1.	CATHODE
2.	SOURCE \& SUBSTRATE	2.	DRAIN	2.	GATE	2.	EMITTER	2.	GATE
3.	DRAIN	3.	GATE	3.	SOURCE \& SUBSTRATE	3.	BASE 2	3.	ANODE
STYLE 11:		STYLE 12:		STYLE 13:		STYLE 14:		STYLE 15:	
PIN 1.	ANODE	PIN 1.	MAIN TERMINAL 1	PIN 1.	ANODE 1	PIN 1.	EMITTER	PIN 1.	ANODE 1
2.	CATHODE \& ANODE	2.	GATE	2.	GATE	2.	COLLECTOR	2.	CATHODE
3.	CATHODE	3.	MAIN TERMINAL 2	3.	CATHODE 2	3.	BASE	3.	ANODE 2
STYLE 16:		STYLE 17:		STYLE 18:		STYLE 19:		STYLE 20:	
PIN 1.	ANODE	PIN 1.	COLLECTOR	PIN 1.	ANODE	PIN 1.	GATE	PIN 1.	NOT CONNECTED
2.	GATE	2.	BASE	2.	CATHODE	2.	ANODE	2.	CATHODE
3.	CATHODE	3.	EMITTER	3.	NOT CONNECTED	3.	CATHODE	3.	ANODE
STYLE 21:		STYLE 22:		STYLE 23:		STYLE 24 :		STYLE 25:	
PIN 1.	COLLECTOR	PIN 1.	SOURCE	PIN 1.	GATE	PIN 1.	EMITTER	PIN 1.	MT 1
2.	EMITTER	2.	GATE	2.	SOURCE	2.	COLLECTOR/ANODE	2.	GATE
3.	BASE	3.	DRAIN	3.	DRAIN	3.	CATHODE	3.	MT 2
STYLE 26:		STYLE 27:		STYLE 28:		STYLE 29 :		STYLE 30:	
PIN 1.	$V_{C C}$	PIN 1.	MT	PIN 1.	CATHODE	PIN 1.	NOT CONNECTED	PIN 1.	DRAIN
2.	GROUND 2	2.	SUBSTRATE	2.	ANODE	2.	ANODE	2.	GATE
3.	OUTPUT	3.	MT	3.	GATE	3.	CATHODE	3.	SOURCE
STYLE 31:		STYLE 32:		STYLE 33:		STYLE 34:		STYLE 35:	
PIN 1.	GATE	PIN 1.	BASE	PIN 1.	RETURN	PIN 1.	INPUT	PIN 1.	GATE
2.	DRAIN	2.	COLLECTOR	2.	INPUT	2.	GROUND	2.	COLLECTOR
3.	SOURCE	3.	EMITTER	3.	OUTPUT	3.	LOGIC	3.	EMITTER

| DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-92 (TO-226) 1 WATT | PAGE 2 OF 2 |

[^1] rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:
Other Similar products are found below :
1.5SMC82AT3G 74LCX574WM FST3126MX MC78L08ACP MMBTA42 FDD8424H_F085A NTZD3154NT1H KSA1015GRTA BAT42XV2 007851X 702607H MC33079DG MC34072DR2G MC34151P MC78L08ACDG 74VHC14MX 74VHC541MTCX FAN3111ESX FDMC86262P FDMD8530 FEBFL7733A_L53U021A FEBFOD8333 MM74HC138MX MMBZ5233B FOD3120SD FPAB30BH60B FQP2N80 1.5KE16AG MT9V115EBKSTCH-GEVB NB6L295MNGEVB NB7L1008MNGEVB NC7WZ126K8X NCL30000LED2GEVB NCN9252MUGEVB NCP1075PSRGEVB NCV4274CDT33RKG NCV887100D1R2G NDT2955 1N5339B NSIC2030JBT3G NV890231MWTXGEVB CAT4101AEVB KA7818ETU S3JB 2SC5569-TD-E FEBFL7734_L55L008A 1V5KE39CA FNB33060T AMIS30422DBGEVB AMIS3062XGEVK

[^0]: ON Semiconductor and ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

[^1]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

