NPN/PNP Dual General Purpose Transistor

This transistor is designed for general purpose amplifier applications. It is housed in the SOT-563 which is designed for low power surface mount applications.

Features

- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS - NPN

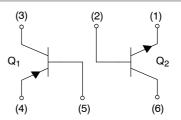
Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	45	V
Collector - Base Voltage	V _{CBO}	50	V
Emitter – Base Voltage	V _{EBO}	6.0	V
Collector Current – Continuous	I _C	100	mAdc

MAXIMUM RATINGS - PNP

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	-45	V
Collector - Base Voltage	V _{CBO}	-50	V
Emitter – Base Voltage	V _{EBO}	-5.0	V
Collector Current – Continuous	Ic	-100	mAdc

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS


Characteristic (One Junction Heated)	Symbol	Max	Unit
Total Device Dissipation (Note 1) T _A = 25°C Derate above 25°C	P _D	357 2.9	mW mW/°C
Thermal Resistance – Junction-to-Ambient (Note 1)	$R_{\theta JA}$	350	°C/W
Characteristic (Both Junctions Heated)	Symbol	Max	Unit
Total Device Dissipation (Note 1) $T_A = 25^{\circ}C$ Derate above 25°C	P _D	500 4.0	mW mW/°C
Thermal Resistance – Junction-to-Ambient (Note 1)	$R_{\theta JA}$	250	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

1. FR-4 @ Minimum Pad

ON Semiconductor®

http://onsemi.com

BC847BPDX6T1

SOT-563 CASE 463A

MARKING DIAGRAM

4F = Specific Device Code

M = Month Code■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
BC847BPDXV6T1G	SOT-563 (Pb-Free)	4 mm pitch 4000/Tape & Reel
SBC847BPDXV6T1G	SOT-563 (Pb-Free)	2 mm pitch 4000/Tape & Reel
BC847BPDXV6T5G	SOT-563 (Pb-Free)	2 mm pitch 8000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (NPN) (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	1				I.
Collector - Emitter Breakdown Voltage (I _C = 10 mA)	V _(BR) CEO	45	-	-	V
Collector – Emitter Breakdown Voltage ($I_C = 10 \mu A, V_{EB} = 0$)	V _{(BR)CES}	50	-	-	V
Collector – Base Breakdown Voltage ($I_C = 10 \mu A$)	V _{(BR)CBO}	50	-	-	V
Emitter – Base Breakdown Voltage ($I_E = 1.0 \mu A$)	V _{(BR)EBO}	6.0	-	-	V
Collector Cutoff Current (V _{CB} = 30 V) (V _{CB} = 30 V, T _A = 150°C)	Ісво	- -	- -	15 5.0	nA μA
ON CHARACTERISTICS	•				•
DC Current Gain $ (I_C = 10 \ \mu\text{A}, \ V_{CE} = 5.0 \ \text{V}) $ $ (I_C = 2.0 \ \text{mA}, \ V_{CE} = 5.0 \ \text{V}) $	h _{FE}	- 200	150 290	- 475	-
Collector – Emitter Saturation Voltage (I_C = 10 mA, I_B = 0.5 mA) (I_C = 100 mA, I_B = 5.0 mA)	V _{CE(sat)}	-	- -	0.25 0.6	V
Base – Emitter Saturation Voltage (I_C = 10 mA, I_B = 0.5 mA) (I_C = 100 mA, I_B = 5.0 mA)	V _{BE(sat)}	- -	0.7 0.9	- -	V
Base – Emitter Voltage (I_C = 2.0 mA, V_{CE} = 5.0 V) (I_C = 10 mA, V_{CE} = 5.0 V)	V _{BE(on)}	580 -	660 -	700 770	mV
SMALL-SIGNAL CHARACTERISTICS					•
Current – Gain – Bandwidth Product $(I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ Vdc}, f = 100 \text{ MHz})$	f _T	100	-	-	MHz
Output Capacitance (V _{CB} = 10 V, f = 1.0 MHz)	C _{obo}	-	-	4.5	pF
Noise Figure (I _C = 0.2 mA, V _{CE} = 5.0 Vdc, R _S = 2.0 k Ω , f = 1.0 kHz, BW = 200 Hz)	NF	_	_	10	dB

ELECTRICAL CHARACTERISTICS (PNP) (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•	•	I
Collector – Emitter Breakdown Voltage (I _C = -10 mA)	V _{(BR)CEO}	-45	_	-	V
Collector – Emitter Breakdown Voltage ($I_C = -10 \mu A, V_{EB} = 0$)	V _(BR) CES	-50	-	-	V
Collector – Base Breakdown Voltage (I _C = –10 μA)	V _{(BR)CBO}	-50	-	-	V
Emitter – Base Breakdown Voltage $(I_E = -1.0 \mu A)$	V _{(BR)EBO}	-5.0	-	-	V
Collector Cutoff Current ($V_{CB} = -30 \text{ V}$) ($V_{CB} = -30 \text{ V}$, $T_A = 150^{\circ}\text{C}$)	I _{CBO}	_ _	_ _	-15 -4.0	nA μA
ON CHARACTERISTICS	:		•	•	
DC Current Gain $ \begin{pmatrix} I_C = -10 \ \mu\text{A}, \ V_{CE} = -5.0 \ \text{V} \end{pmatrix} $ $ \begin{pmatrix} I_C = -2.0 \ \text{mA}, \ V_{CE} = -5.0 \ \text{V} \end{pmatrix} $	h _{FE}	_ 200	150 290	- 475	_
Collector – Emitter Saturation Voltage ($I_C = -10$ mA, $I_B = -0.5$ mA) ($I_C = -100$ mA, $I_B = -5.0$ mA)	V _{CE(sat)}	_ _	_ _	-0.3 -0.65	V
Base – Emitter Saturation Voltage ($I_C = -10$ mA, $I_B = -0.5$ mA) ($I_C = -100$ mA, $I_B = -5.0$ mA)	V _{BE(sat)}	- -	-0.7 -0.9	- -	V
Base – Emitter On Voltage ($I_C = -2.0 \text{ mA}$, $V_{CE} = -5.0 \text{ V}$) ($I_C = -10 \text{ mA}$, $V_{CE} = -5.0 \text{ V}$)	V _{BE(on)}	-0.6 -	_ _	-0.75 -0.82	٧
SMALL-SIGNAL CHARACTERISTICS		•	•	•	
Current – Gain – Bandwidth Product $(I_C = -10 \text{ mA}, V_{CE} = -5.0 \text{ Vdc}, f = 100 \text{ MHz})$	f _T	100	_	-	MHz
Output Capacitance $(V_{CB} = -10 \text{ V}, f = 1.0 \text{ MHz})$	C _{ob}	=	_	4.5	pF
Noise Figure (I _C = -0.2 mA, V _{CE} = -5.0 Vdc, R _S = 2.0 k Ω , f = 1.0 kHz, BW = 200 Hz)	NF	_	_	10	dB

TYPICAL NPN CHARACTERISTICS

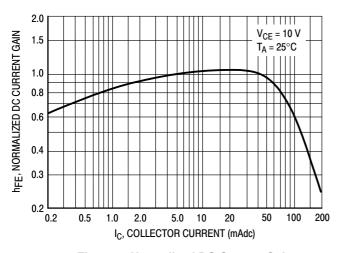


Figure 1. Normalized DC Current Gain

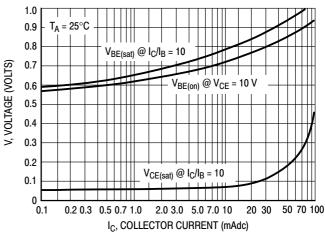


Figure 2. "Saturation" and "On" Voltages

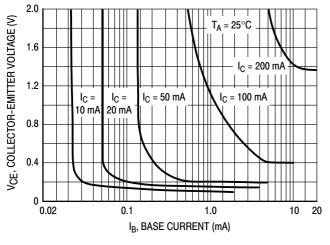


Figure 3. Collector Saturation Region

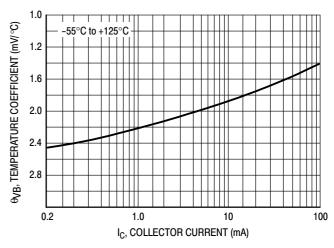


Figure 4. Base-Emitter Temperature Coefficient

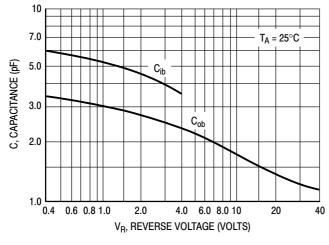


Figure 5. Capacitances

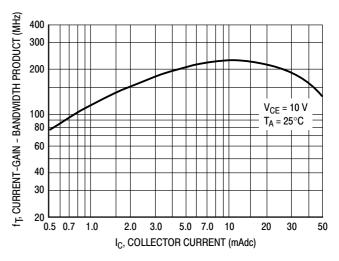


Figure 6. Current-Gain - Bandwidth Product

TYPICAL PNP CHARACTERISTICS

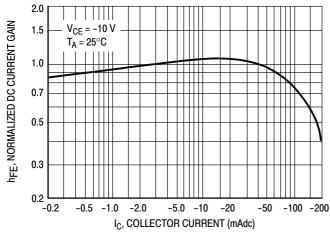


Figure 7. Normalized DC Current Gain

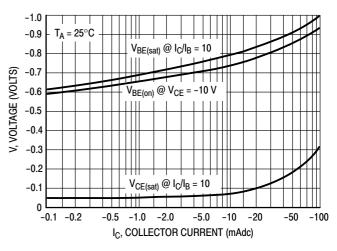


Figure 8. "Saturation" and "On" Voltages

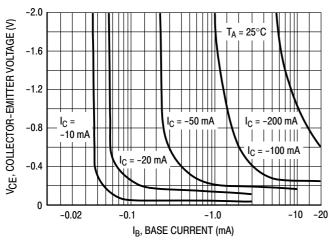


Figure 9. Collector Saturation Region

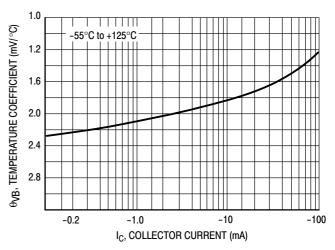


Figure 10. Base-Emitter Temperature Coefficient

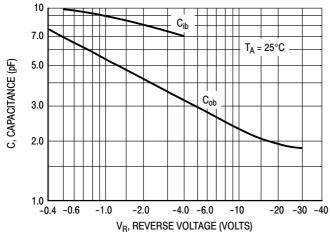


Figure 11. Capacitances

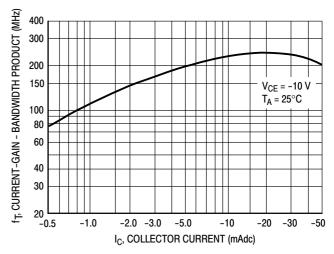
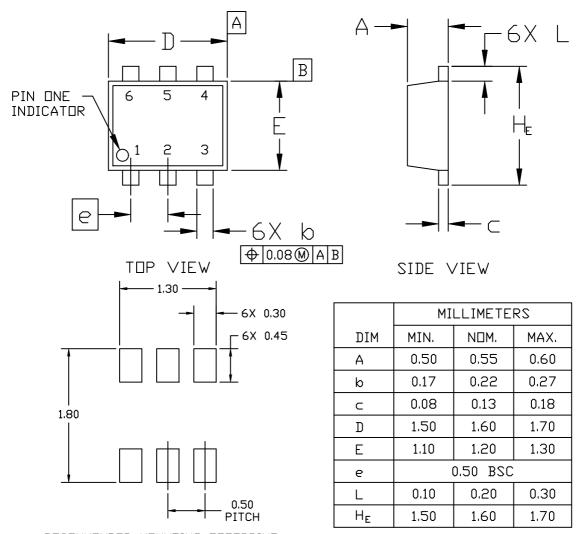


Figure 12. Current-Gain - Bandwidth Product

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS



SOT-563, 6 LEAD CASE 463A ISSUE H

DATE 26 JAN 2021

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

RECOMMENDED MOUNTING FOOTPRINT*

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

DOCUMENT NUMBER:	98AON11126D	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-563, 6 LEAD		PAGE 1 OF 2	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-563, 6 LEAD

CASE 463A ISSUE H

2

1

DATE 26 JAN 2021

STYLE 1: PIN 1. EMITTER 1 2. BASE 1 3. COLLECTOR 2 4. EMITTER 2 5. BASE 2 6. COLLECTOR 1	STYLE 2: PIN 1. EMITTER 1 2. EMITTER 2 3. BASE 2 4. COLLECTUR 2 5. BASE 1 6. COLLECTUR 1	STYLE 3: PIN 1. CATHODE 1 2. CATHODE 1 3. ANODE/ANODE 4. CATHODE 2 5. CATHODE 2 6. ANODE/ANODE
STYLE 4: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR	STYLE 5: PIN 1. CATHODE 2. CATHODE 3. ANODE 4. ANODE 5. CATHODE 6. CATHODE	STYLE 6: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE
STYLE 7: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. ANODE 6. CATHODE	STYLE 8: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SDURCE 5. DRAIN 6. DRAIN	STYLE 9: PIN 1. SDURCE 1 2. GATE 1 3. DRAIN 2 4. SDURCE 2 5. GATE 2 6. DRAIN 1
STYLE 10: PIN 1. CATHODE 1 2. N/C 3. CATHODE 2 4. ANODE 2 5. N/C 6. ANODE 1	STYLE 11: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	

GENERIC MARKING DIAGRAM*

XX = Specific Device Code
M = Month Code
Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON11126D	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-563, 6 LEAD		PAGE 2 OF 2	

ON Semiconductor and (ii) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460
2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA
2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E
US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E
NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13
NTE15 NTE16001