ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

NPN Silicon Epitaxial Transistor

These NPN Silicon Epitaxial transistors are designed for use in audio amplifier applications. The device is housed in the SOT–223 package, which is designed for medium power surface mount applications.

Features

- High Current: 1.0 A
- The SOT-223 package can be soldered using wave or reflow. The formed leads absorb thermal stress during soldering, eliminating the possibility of damage to the die
- Available in 12 mm Tape and Reel
 Use BCP56T1G to Order the 7 inch/1000 Unit Reel
 Use BCP56T3G to Order the 13 inch/4000 Unit Reel
- PNP Complement is BCP53T1G
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

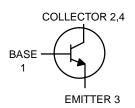
MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	80	Vdc
Collector-Base Voltage	V _{CBO}	100	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Collector Current	I _C	1	Adc
Collector Current - Peak (Note 1)	I _{CM}	2	Adc
Total Power Dissipation @ T _A = 25°C (Note 2) Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to 150	°C

THERMAL CHARACTERISTICS

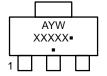
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient (surface mounted)	$R_{ heta JA}$	83.3	°C/W
Maximum Temperature for Soldering Purposes Time in Solder Bath	TL	260 10	°C Sec

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Reference SOA curve.
- 2. Device mounted on a FR-4 glass epoxy printed circuit board 1.575 in x 1.575 in x 0.0625 in; mounting pad for the collector lead = 0.93 sq in.

ON Semiconductor®

www.onsemi.com


MEDIUM POWER NPN SILICON HIGH CURRENT TRANSISTOR SURFACE MOUNT

SOT-223 CASE 318E STYLE 1

MARKING DIAGRAM

XXXXX = Specific Device Code A = Assembly Location

Y = Year
W = Work Week
Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)

Characteristics		Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS							
Collector–Base Breakdown Voltage (I _C = 100 µAdc, I _E = 0)		V _{(BR)CBO}	100	_	_	Vdc	
Collector–Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)		V _{(BR)CEO}	80	-	-	Vdc	
Emitter–Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V _{(BR)EBO}	5.0	_	-	Vdc	
Collector–Base Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)		I _{CBO}	_	-	100	nAdc	
Emitter–Base Cutoff Current (V _{EB} = 5.0 Vdc, I _C = 0)		I _{EBO}	-	-	10	μAdc	
ON CHARACTERISTICS (Note 3)							
DC Current Gain $ (I_C = 5.0 \text{ mA, V}_{CE} = 2.0 \text{ V}) $ $ (I_C = 150 \text{ mA, V}_{CE} = 2.0 \text{ V}) $ $ (I_C = 500 \text{ mA, V}_{CE} = 2.0 \text{ V}) $	All Part Types BCP56 BCP56–10 BCP56–16 All Types	h _{FE}	25 40 63 100 25	- - -	- 250 160 250	-	
Collector–Emitter Saturation Voltage (I _C = 500 mAdc, I _B = 50 mAdc)	711119000	V _{CE(sat)}	-	-	0.5	Vdc	
Base–Emitter On Voltage (I _C = 500 mAdc, V _{CE} = 2.0 Vdc)		V _{BE(on)}	_	-	1.0	Vdc	
SWITCHING CHARACTERISTICS			•	•	•		
Rise Time $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mA}, I_{B1} = 15 \text{ mA})$		t _r	_	14	-	ns	
Delay Time $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mA}, I_{B1} = 15 \text{ mA})$		t _d	_	9	_	ns	
Storage Time $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mA}, I_{B1} = 15 \text{ mA}, I_{B2} = 15 \text{ mA})$		t _s	_	714	_	ns	
Fall Time $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mA}, I_{B1} = 15 \text{ mA}, I_{B2} = 15 \text{ mA})$		t _f	-	58	_	ns	
DYNAMIC CHARACTERISTICS							
Current–Gain – Bandwidth Product ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 35 \text{ MHz}$)		f _T	_	130	-	MHz	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%

TYPICAL ELECTRICAL CHARACTERISTICS

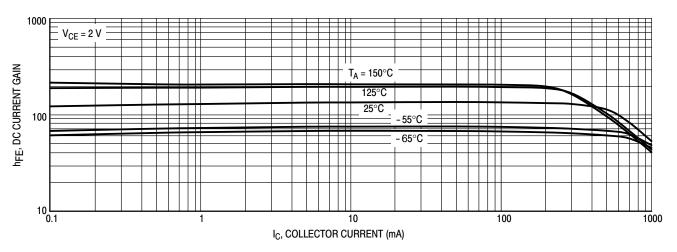


Figure 1. DC Current Gain

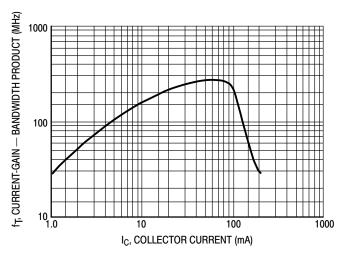


Figure 2. Current-Gain - Bandwidth Product

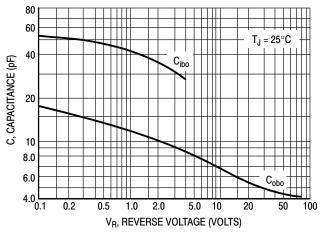


Figure 3. Capacitance

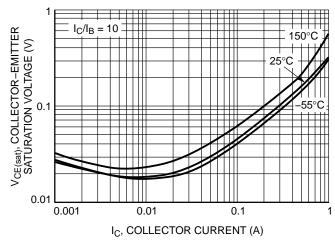


Figure 4. Collector Emitter Saturation Voltage vs. Collector Current

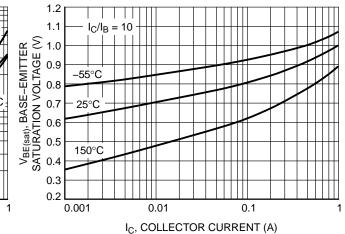


Figure 5. Base Emitter Saturation Voltage vs.
Collector Current

TYPICAL ELECTRICAL CHARACTERISTICS

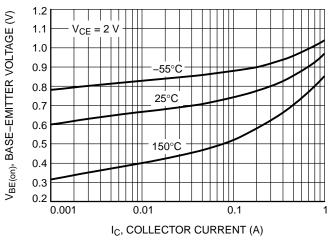


Figure 6. Base Emitter Voltage vs. Collector Current

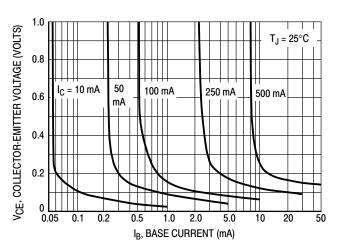


Figure 7. Collector Saturation Region

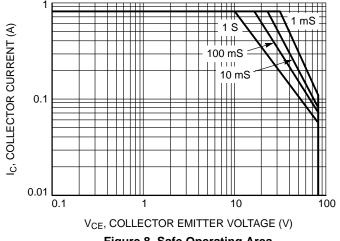
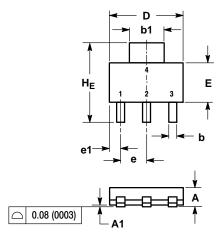


Figure 8. Safe Operating Area

Figure 9. Power Derating Curve


ORDERING INFORMATION

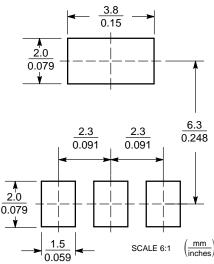
Device	Marking	Package	Shipping †		
BCP56T1G	BH	SOT-223	1000 / Tape & Reel		
SBCP56T1G*		(Pb-Free)			
BCP56T3G	ВН	SOT-223	4000 / Tape & Reel		
SBCP56T3G*		(Pb-Free)			
BCP56-10T1G	BH-10	SOT-223	1000 / Tape & Reel		
SBCP56-10T1G*		(Pb-Free)			
BCP56-10T3G	BH-10	SOT-223	4000 / Tape & Reel		
NSVBCP56-10T3G*		(Pb-Free)			
BCP56-16T1G	BH-16	SOT-223	1000 / Tape & Reel		
SBCP56-16T1G*		(Pb-Free)			
BCP56-16T3G	BH-16	SOT-223 4000 / Tape &			
SBCP56-16T3G*		(Pb-Free)			

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04 **ISSUE N**

NOTES:


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
n	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
E	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
Г	0.20			0.008	-	
L1	1.50	1.75	2.00	0.060	0.069	0.078
HE	6.70	7.00	7.30	0.264	0.276	0.287
θ	0°	_	10°	0°	_	10°

STYLE 1:

PIN 1. BASE COLLECTOR EMITTER COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

0

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR EMT2T2R MCH6102-TL-E

FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G

NTE101 NTE13 NTE15