ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
BCW30LT1G, SBCW30LT1G

General Purpose Transistors

PNP Silicon

Features

- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	-32	Vdc
Collector - Base Voltage	$\mathrm{V}_{\text {CBO }}$	-32	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	-5.0	Vdc
Collector Current - Continuous	I_{C}	-100	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Total Device Dissipation FR-5 Board (Note 1) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	225	mW
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\text {日JA }}$	556	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Total Device Dissipation Alumina Substrate (Note 2) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	300	mW
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\text {日JA }}$	417	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $\mathrm{FR}-5=1.0 \times 0.75 \times 0.062 \mathrm{in}$.
2. Alumina $=0.4 \times 0.3 \times 0.024 \mathrm{in} .99 .5 \%$ alumina.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

MARKING DIAGRAM

C2 = Specific Device Code
M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping
BCW30LT1G	SOT-23 (Pb-Free)	$3,000 /$ Tape \& Reel
SBCW30LT1G	SOT-23 (Pb-Free)	$3,000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=-2.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{\text {(BR)CEO }}$	-32	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{EB}}=0\right)$	$\mathrm{V}_{\text {(BR)CES }}$	-32	-	Vdc
Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	-32	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \text { EBO }}$	-5.0	-	Vdc
Collector Cutoff Current $\begin{aligned} & \left(V_{C B}=-32 V d c, I_{E}=0\right) \\ & \left(V_{C B}=-32 V d c, I_{E}=0, T_{A}=100^{\circ} C\right) \end{aligned}$	$\mathrm{I}_{\text {cbo }}$		$\begin{gathered} -100 \\ -10 \end{gathered}$	nAdc μ Adc

ON CHARACTERISTICS

DC Current Gain $\left(\mathrm{I}_{\mathrm{C}}=-2.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{Vdc}\right)$	$\mathrm{h}_{\text {FE }}$	215	500	-
Collector-Emitter Saturation Voltage $\left(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-0.5 \mathrm{mAdc}\right)$	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	-0.3	Vdc
Base-Emitter On Voltage $\left(\mathrm{I}_{\mathrm{C}}=-2.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{Vdc}\right)$	$\mathrm{V}_{\mathrm{BE} \text { (on) }}$	-0.6	-0.75	Vdc

SMALL-SIGNAL CHARACTERISTICS

Output Capacitance $\left(\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=-10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {obo }}$	-	7.0	pF
Noise Figure $\left(\mathrm{I}_{\mathrm{C}}=-0.2 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{S}}=2.0 \mathrm{k} \Omega, \mathrm{f}=1.0 \mathrm{kHz}, \mathrm{BW}=200 \mathrm{~Hz}\right)$	NF	-	10	dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL NOISE CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CE}}=-5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Figure 1. Noise Voltage

Figure 2. Noise Current

BCW30LT1G, SBCW30LT1G

NOISE FIGURE CONTOURS

$\left(\mathrm{V}_{\mathrm{CE}}=-5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Figure 3. Narrow Band, 100 Hz

Figure 5. Wideband

BCW30LT1G, SBCW30LT1G

TYPICAL STATIC CHARACTERISTICS

Figure 6. DC Current Gain

Figure 7. Collector Saturation Region

Figure 9. "On" Voltages

Figure 8. Collector Characteristics

Figure 10. Temperature Coefficients

BCW30LT1G, SBCW30LT1G

TYPICAL DYNAMIC CHARACTERISTICS

Figure 11. Turn-On Time

Figure 13. Current-Gain - Bandwidth Product

Figure 15. Input Impedance

Figure 12. Turn-Off Time

Figure 14. Capacitance

Figure 16. Output Admittance

BCW30LT1G, SBCW30LT1G

Figure 17. Thermal Response

Figure 18. Typical Collector Leakage Current

DESIGN NOTE: USE OF THERMAL RESPONSE DATA

A train of periodical power pulses can be represented by the model as shown in Figure 19. Using the model and the device thermal response the normalized effective transient thermal resistance of Figure 17 was calculated for various duty cycles.
To find $Z_{\theta J A(t)}$, multiply the value obtained from Figure 17 by the steady state value $\mathrm{R}_{\theta \mathrm{JA}}$.
Example:
The BCW29LT1 is dissipating 2.0 watts peak under the following conditions:

$$
\mathrm{t}_{1}=1.0 \mathrm{~ms}, \mathrm{t}_{2}=5.0 \mathrm{~ms}(\mathrm{D}=0.2)
$$

Using Figure 17 at a pulse width of 1.0 ms and $\mathrm{D}=0.2$, the reading of $r(t)$ is 0.22 .
The peak rise in junction temperature is therefore
$\Delta T=r(t) \times P_{(p k)} \times R_{\theta J A}=0.22 \times 2.0 \times 200=88^{\circ} \mathrm{C}$.
For more information, see $\mathrm{AN}-569$.

BCW30LT1G, SBCW30LT1G

PACKAGE DIMENSIONS

SOT-23 (TO-236)
CASE 318-08
ISSUE AR

NOTES

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 2. CONTROLLING DIMENSION: MILLIMETERS.
2. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
c	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
HE	2.10	2.40	2.64	0.083	0.094	0.104
T	0°	---	10°	0°	---	10°

STYLE 6:
PIN 1. BASE
2. EMITTER
3. COLLECTOR

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

