BDV65B (NPN), BDV64B (PNP)

Complementary Silicon Plastic Power Darlingtons

... for use as output devices in complementary general purpose amplifier applications.

Features

- High DC Current Gain - HFE = 1000 (min) @ 5 Adc
- Monolithic Construction with Built-in Base Emitter Shunt Resistors
- These are $\mathrm{Pb}-$ Free Devices*

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	100	Vdc
Collector-Base Voltage	$\mathrm{V}_{C B}$	100	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EB }}$	5.0	Vdc
$\begin{array}{ll}\text { Collector Current } & \begin{array}{l}\text { - Continuous } \\ \\ \text { - Peak }\end{array}\end{array}$	I_{C}	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	Adc
Base Current	I_{B}	0.5	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{aligned} & 125 \\ & 1.0 \end{aligned}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { to } \\ & +150 \end{aligned}$	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\text {өJC }}$	1.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
 download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

10 AMPERE DARLINGTON COMPLEMENTARY SILICON POWER TRANSISTORS 60-80-100-120 VOLTS, 125 WATTS

TO-247
CASE 340L STYLE 3

NOTE: Effective June 2012 this device will be available only in the TO-247 package. Reference FPCN\# 16827.

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

BDV65B (NPN), BDV64B (PNP)

MARKING DIAGRAMS

ORDERING INFORMATION

Device Order Number	Package Type	Shipping
BDV65BG	TO-218 (Pb-Free)	30 Units / Rail
BDV64BG	TO-218 (Pb-Free)	30 Units / Rail
BDV65BG	TO-247 (Pb-Free)	30 Units / Rail
BDV64BG	TO-247 (Pb-Free)	30 Units / Rail

Figure 1. Power Derating

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Sustaining Voltage (1) $\left(\mathrm{I}_{\mathrm{C}}=30 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{\text {CEO(sus) }}$	100	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=50 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$I_{\text {CEO }}$	-	1.0	mAdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=100 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\text {cbo }}$	-	0.4	mAdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=50 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}\right)$	$\mathrm{I}_{\text {CBO }}$	-	2.0	mAdc
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{BE}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{I}_{\text {Ebo }}$	-	5.0	mAdc

ON CHARACTERISTICS

$\begin{aligned} & \text { DC Current Gain } \\ & \quad\left(\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=4.0 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	1000	-	-
Collector-Emitter Saturation Voltage ($\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.02 \mathrm{Adc}$)	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	2.0	Vdc
Base-Emitter Saturation Voltage ($\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=4.0 \mathrm{Vdc}$)	$\mathrm{V}_{\mathrm{BE} \text { (on) }}$	-	2.5	Vdc

Figure 2. DC Current Gain

Figure 4. "On" Voltages

Figure 6. Active Region Safe Operating Area

Figure 3. DC Current Gain

Figure 5. "On" Voltages

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{C}-V_{C E}$ limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 6 is based on $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}=150^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{C}}$ is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ $\leq 150^{\circ} \mathrm{C}$. $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ may be calculated from the data in Figure 7. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

Figure 7. Thermal Response

SOT-93 (TO-218)
CASE 340D-02 ISSUE E

DATE 01/03/2002

SCALE 1:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	---	20.35	---	0.801
B	14.70	15.20	0.579	0.598
C	4.70	4.90	0.185	0.193
D	1.10	1.30	0.043	0.051
E	1.17	1.37	0.046	0.054
G	5.40	5.55	0.213	0.219
H	2.00	3.00	0.079	0.118
J	0.50	0.78	0.020	0.031
K	31.00 REF	1.220 REF		
L	---	16.20	---	0.638
Q	4.00	4.10	0.158	0.161
S	17.80	18.20	0.701	0.717
U	4.00 REF	0.157 REF		
V	1.75 REF	0.069		

MARKING DIAGRAM

A	$=$ Assembly Location
Y	$=$ Year
WW	$=$ Work Week
Xxxxx	= Device Code

| DOCUMENT NUMBER: | 98ASB42643B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-93 | PAGE 1 OF 1 |

[^0]

CASE 340L ISSUE G

NDTES:

1. DIMENSIZNING AND TZLERANCING PER ASME Y14.5M, 1982.
2. CINTRILLING DIMENSICN: MILLIMETER

	MILLIMETERS		INCHES	
DIM	MIN.	MAX.	MIN.	MAX.
A	20.32	21.08	0.800	0.830
B	15.75	16.26	0.620	0.640
C	4.70	5.30	0.185	0.209
D	1.00	1.40	0.040	0.055
E	1.90	2.60	0.075	0.102
F	1.65	2.13	0.065	0.084
G	5.45	BSC	0.215	BSC
H	1.50	2.49	0.059	0.098
J	0.40	0.80	0.016	0.031
K	19.81	20.83	0.780	0.820
L	5.40	6.20	0.212	0.244
N	4.32	5.49	0.170	0.216
P	---	4.50	----	0.177
Q	3.55	3.65	0.140	0.144
U	6.15	BSC	0.242	BSC
W	2.87	3.12	0.113	0.123

GENERIC MARKING DIAGRAM*

PIN 1. GATE
2. DRAIN
3. SOURCE
4. DRAIN STYLE 5:

PIN 1. CATHODE
2. ANODE
3. GATE
4. ANODE

STYLE 2:

PIN 1. ANODE
2. CATHODE (S)
3. ANODE 2
4. CATHODES (S)

STYLE 6:
PIN 1. MAIN TERMINAL 1 2. MAIN TERMINAL 2 3. GATE
4. MAIN TERMINAL 2

STYLE 3:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

STYLE 4

PIN 1. GATE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

XXXXX = Specific Device Code
A = Assembly Location
Y = Year
WW = Work Week
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " F ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB15080C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	TO-247	PAGE 1 OF 1

[^1]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Darlington Transistors category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
NJVMJD128T4G 281287X BDV64B NJVMJD117T4G LB1205-L-E 2N6053 MPSA14 TIP140 MPSA13 TIP127L-BP 2N6383
ULN2003ACM/TR 2N7371 2N6058 2N6059 2N6051 MJ2501 MJ3001 2SB1560 2SB852KT146B 2SD2560 TIP112TU BCV27 MMBTA13-TP MMSTA28T146 NTE2557 NJVNJD35N04T4G MPSA29-D26Z FJB102TM BSP61H6327XTSA1 BU941ZPFI

2SD1980TL NTE2350 NTE245 NTE246 NTE2649 NTE46 NTE98 ULN2003ADR2G NTE2344 NTE2349 NTE2405 NTE243 NTE244 NTE247 NTE248 NTE249 NTE253 NTE2548 NTE261

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

[^1]: onsemi and Onsemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

