BDX33B, BDX33C (NPN) BDX34B, BDX34C (PNP)

Darlington Complementary Silicon Power Transistors

These devices are designed for general purpose and low speed switching applications.

Features

- High DC Current Gain $-\mathrm{h}_{\mathrm{FE}}=2500$ (typ.) at $\mathrm{I}_{\mathrm{C}}=4.0$
- Collector-Emitter Sustaining Voltage at 100 mAdc

$$
\begin{aligned}
\mathrm{V}_{\mathrm{CEO}(\mathrm{sus})} & =80 \mathrm{Vdc}(\mathrm{~min})-\mathrm{BDX} 33 \mathrm{~B}, \mathrm{BDX} 334 \mathrm{~B} \\
& =100 \mathrm{Vdc}(\mathrm{~min})-\mathrm{BDX} 33 \mathrm{C}, \mathrm{BDX} 334 \mathrm{C}
\end{aligned}
$$

- Low Collector-Emitter Saturation Voltage

$$
\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}=2.5 \mathrm{Vdc}(\max) \text { at } \mathrm{I}_{\mathrm{C}}=3.0 \mathrm{Adc}
$$

> - BDX33B, 33C/34B, 34C

- Monolithic Construction with Build-In Base-Emitter Shunt Resistors
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage BDX33B, BDX34B BDX33C, BDX34C	$\mathrm{V}_{\text {CEO }}$	$\begin{gathered} 80 \\ 100 \end{gathered}$	Vdc
Collector-Base Voltage BDX33B, BDX34B BDX33C, BDX34C	$\mathrm{V}_{C B}$	$\begin{gathered} 80 \\ 100 \end{gathered}$	Vdc
Emitter-Base Voltage	V_{EB}	5.0	Vdc
Collector Current Continuous Peak	I_{C}	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	Adc
Base Current	I_{B}	0.25	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} \hline 70 \\ 0.56 \end{gathered}$	$\underset{\mathrm{W} /{ }^{\mathrm{W}} \mathrm{C}}{ }$
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\text {өJC }}$	1.78	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com

DARLINGTON 10 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS 80-100 VOLTS, 65 WATTS

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

TO-220 CASE 221A STYLE 1
MARKING DIAGRAM

BDX3xy $=$	Device Code
	$x=3$ or 4
	$y=B$ or C
A $=$	Assembly Location
Y	$=$ Year
$\mathrm{WW}=$	Work Week
$\mathrm{G}=$	$=$ Pb-Free Package

[^0]

Figure 1. Power Derating

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit

OFF CHARACTERISTICS

$\begin{aligned} & \text { Collector-Emitter Sustaining Voltage (Note 1) } \\ & \quad\left(\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right) \end{aligned}$	BDX33B/BDX34B BDX33C/BDX34C	$\mathrm{V}_{\text {CEO }}$ (sus)	$\begin{gathered} 80 \\ 100 \end{gathered}$	-	Vdc
Collector-Emitter Sustaining Voltage (Note 1) $\left(I_{C}=100 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{R}_{\mathrm{BE}}=100\right)$	BDX33B/BDX34B BDX33C/BDX33C	$\mathrm{V}_{\text {CER (sus) }}$	$\begin{gathered} 80 \\ 100 \end{gathered}$	-	Vdc
Collector-Emitter Sustaining Voltage (Note 1) $\left(I_{C}=100 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~V}_{\mathrm{BE}}=1.5 \mathrm{Vdc}\right)$	BDX33B/BDX34B BDX33C/BDX34C	$\mathrm{V}_{\text {CEX (sus) }}$	$\begin{gathered} 80 \\ 100 \end{gathered}$	-	Vdc
Collector Cutoff Current $\left(V_{C E}=1 / 2 \text { rated } V_{C E O}, I_{B}=0\right)$	$\begin{array}{r} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{array}$	$I_{\text {cee }}$	-	$\begin{aligned} & 0.5 \\ & 10 \end{aligned}$	mAdc
Collector Cutoff Current $\left(V_{C B}=\text { rated } V_{C B O}, I_{E}=0\right)$	$\begin{array}{r} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{array}$	$I_{\text {cbo }}$	-	$\begin{aligned} & 1.0 \\ & 5.0 \end{aligned}$	mAdc
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{BE}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$		$l_{\text {ebo }}$	-	10	mAdc

ON CHARACTERISTICS

$\begin{aligned} & \text { DC Current Gain (Note 1) } \\ & \quad\left(I_{C}=3.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}\right) \end{aligned}$	BDX33B, 33C/34B, 34C	$h_{\text {FE }}$	750	-	-
Collector-Emitter Saturation Voltage $\left(I_{C}=3.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=6.0 \mathrm{mAdc}\right)$	BDX33B, 33C/34B, 34C	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	2.5	Vdc
Base-Emitter On Voltage $\left(\mathrm{I}_{\mathrm{C}}=3.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}\right)$	BDX33B, 33C/34B, 34C	$\mathrm{V}_{\mathrm{BE} \text { (on) }}$	-	2.5	Vdc
Diode Forward Voltage ($\mathrm{I}_{\mathrm{C}}=8.0 \mathrm{Adc}$)		V_{F}	-	4.0	Vdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pulse Test: Pulse Width ≤ 300 us, Duty Cycle $\leq 2.0 \%$.
2. Pulse Test non repetitive: Pulse Width $=0.25$ seconds.

Figure 1. Thermal Response

Figure 2. Active-Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $\mathrm{I}_{\mathrm{C}}-\mathrm{V}_{\mathrm{CE}}$ limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 3 is based on $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}$

$=150^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{C}}$ is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}=150^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

BDX33B, BDX33C (NPN) BDX34B, BDX34C (PNP)

Figure 5. DC Current Gain

Figure 6. Collector Saturation Region

Figure 7. "On" Voltages

ORDERING INFORMATION

Device	Package	Shipping †
BDX33BG	TO-220 (Pb-Free)	50 Units / Rail
BDX33CG	TO-220 (Pb-Free)	50 Units / Rail
BDX34BG	TO-220 (Pb-Free)	50 Units / Rail
BDX34CG	TO-220 (Pb-Free)	50 Units / Rail

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DATE 05 NOV 2019
NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
2. CONTROLLING DIMENSION: INCHES
3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.
4. MAX WIDTH FOR F102 DEVICE $=1.35 \mathrm{MM}$

DIM	INCHES		MILLIMETERS	
	MIN.	MAX.	MIN.	MAX.
A	0.570	0.620	14.48	15.75
B	0.380	0.415	9.66	10.53
C	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
H	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	----	1.15	---
Z	---	0.080	---	2.04

STYLE 1:	
PIN 1.	BASE
2.	COLLECTOR
3.	EMITTER
4.	COLLECTOR
STYLE 5:	
PIN 1.	GATE
2.	DRAIN
3.	SOURCE
4.	DRAIN
STYLE 9:	
PIN 1.	GATE
2.	COLLECTOR
3.	EMITTER
4.	COLLECTOR

STYLE 2:	
PIN 1.	BASE
2.	EMITTER
3.	COLLECTOR
4.	EMITTER
STYLE 6:	
PIN 1.	ANODE
2.	CATHODE
3.	ANODE
4.	CATHODE
STYLE 10:	
PIN 1.	GATE
2.	SOURCE
3.	DRAIN
4.	SOURCE

STYLE 3:		STYLE 4:	
PIN 1.	CATHODE	PIN 1.	MAIN TERMINAL 1
2.	ANODE	2.	MAIN TERMINAL 2
3.	GATE	3.	GATE
4.	ANODE	4.	MAIN TERMINAL 2
STYLE 7:		STYLE 8:	
PIN 1.	CATHODE	PIN 1.	CATHODE
2.	ANODE	2.	ANODE
3.	CATHODE	3.	EXTERNAL TRIP/DELAY
4.	ANODE	4.	ANODE
STYLE 11:	STYLE 12.		
PIN 1.	DRAIN	PIN 1. MAIN TERMINAL 1	
2. SOURCE	2. MAIN TERMINAL 2		
3.	GATE	3.	GATE
4.	SOURCE	4. NOT CONNECTED	

| DOCUMENT NUMBER: | 98ASB42148B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-220 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Darlington Transistors category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
NJVMJD128T4G 281287X BDV64B NJVMJD117T4G LB1205-L-E 2N6053 MPSA14 TIP140 MPSA13 TIP127L-BP 2N6383
ULN2003ACM/TR 2N7371 2N6058 2N6059 2N6051 MJ2501 MJ3001 2SB1560 2SB852KT146B 2SD2560 TIP112TU BCV27 MMBTA13-TP MMSTA28T146 NTE2557 NJVNJD35N04T4G MPSA29-D26Z FJB102TM BSP61H6327XTSA1 BU941ZPFI

2SD1980TL NTE2350 NTE245 NTE246 NTE2649 NTE46 NTE98 ULN2003ADR2G NTE2344 NTE2349 NTE2405 NTE243 NTE244 NTE247 NTE248 NTE249 NTE253 NTE2548 NTE261

[^0]: *For additional information on our $\mathrm{Pb}-F r e e$ strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

