ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
BDX53B, BDX53C (NPN), BDX54B, BDX54C (PNP)

Plastic Medium-Power Complementary Silicon Transistors

These devices are designed for general-purpose amplifier and low-speed switching applications.

Features

- High DC Current Gain -

$$
\mathrm{h}_{\mathrm{FE}}=2500(\mathrm{Typ}) @ \mathrm{I}_{\mathrm{C}}=4.0 \mathrm{Adc}
$$

- Collector Emitter Sustaining Voltage - @ 100 mAdc

$$
\begin{aligned}
\mathrm{V}_{\mathrm{CEO}(\mathrm{sus})} & =80 \mathrm{Vdc}(\mathrm{Min})-\mathrm{BDX53B}, 54 \mathrm{~B} \\
& =100 \mathrm{Vdc}(\mathrm{Min})-\mathrm{BDX53C}, 54 \mathrm{C}
\end{aligned}
$$

- Low Collector-Emitter Saturation Voltage -

$$
\begin{aligned}
\mathrm{V}_{\mathrm{CE}(\mathrm{sat})} & =2.0 \mathrm{Vdc}(\operatorname{Max}) @ \mathrm{I}_{\mathrm{C}}=3.0 \mathrm{Adc} \\
& =4.0 \mathrm{Vdc}(\operatorname{Max}) @ \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{Adc}
\end{aligned}
$$

- Monolithic Construction with Built-In Base-Emitter Shunt Resistors
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage BDX53B, BDX54B BDX53C, BDX54C	$\mathrm{V}_{\text {CEO }}$	$\begin{gathered} 80 \\ 100 \end{gathered}$	Vdc
Collector-Base Voltage BDX53B, BDX54B BDX53C, BDX54C	$\mathrm{V}_{C B}$	$\begin{gathered} 80 \\ 100 \end{gathered}$	Vdc
Emitter-Base Voltage	V_{EB}	5.0	Vdc
Collector Current- Continuous - Peak	I_{C}	$\begin{aligned} & 8.0 \\ & 12 \end{aligned}$	Adc
Base Current	I_{B}	0.2	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} \hline 65 \\ 0.48 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\text {өJC }}$	1.92	${ }^{\circ} \mathrm{C} / \mathrm{W}$

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com
DARLINGTON
8 AMPERE
COMPLEMENTARY SILICON POWER TRANSISTORS
80-100 VOLTS, 65 WATTS

TO-220
CASE 221A
STYLE 1

MARKING DIAGRAM

 \& PIN ASSIGNMENT

BDX5xy $=$	Device Code		
	$x=3$ or 4	\quad	$y=B$ or C
:---			
$=$		Assembly Location	
:---			
Y $=$			

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

BDX53B, BDX53C (NPN), BDX54B, BDX54C (PNP)

Figure 1. Power Derating

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
$\begin{aligned} & \text { Collector-Emitter Sustaining Voltage (Note 1) } \\ & \quad\left(\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right) \end{aligned}$	BDX53B, BDX54B BDX53C, BDX54C	$\mathrm{V}_{\text {CEO(sus) }}$	$\begin{gathered} 80 \\ 100 \end{gathered}$	-	Vdc
Collector Cutoff Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=40 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=50 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0\right) \end{aligned}$	BDX53B, BDX54B BDX53C, BDX54C	$I_{\text {cee }}$	-	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	mAdc
Collector Cutoff Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CB}}=80 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right) \\ & \left(\mathrm{V}_{\mathrm{CB}}=100 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right) \end{aligned}$	$\begin{aligned} & \text { BDX53B, BDX54B } \\ & \text { BDX53C, BDX54C } \end{aligned}$	$\mathrm{I}_{\text {cbo }}$	-	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	mAdc

ON CHARACTERISTICS (Note 1)

DC Current Gain $\left(I_{C}=3.0\right.$ Adc, $\left.V_{C E}=3.0 ~ V d c\right)$	h_{FE}	750	-	-
Collector-Emitter Saturation Voltage $\left(\mathrm{I}_{\mathrm{C}}=3.0\right.$ Adc, $\left.\mathrm{I}_{\mathrm{B}}=12 \mathrm{mAdc}\right)$	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	2.0	Vdc
Base-Emitter Saturation Voltage $\left(\mathrm{I}_{\mathrm{C}}=3.0\right.$ Adc, $\left.\mathrm{I}_{\mathrm{C}}=12 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	-	2.5	Vdc

DYNAMIC CHARACTERISTICS

Small-Signal Current Gain $\left(\mathrm{I}_{\mathrm{C}}=3.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=4.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right.$)		$\mathrm{hfe}_{\text {fe }}$	4.0	-	-
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, f=0.1 \mathrm{MHz}\right)$	$\begin{aligned} & \text { BDX53B, 53C } \\ & \text { BDX54B, } 54 \mathrm{C} \end{aligned}$	$\mathrm{C}_{\text {ob }}$	-	$\begin{aligned} & 300 \\ & 200 \end{aligned}$	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.

BDX53B, BDX53C (NPN), BDX54B, BDX54C (PNP)

Figure 2. Switching Time Test Circuit

Figure 3. Switching Times

Figure 4. Thermal Response

Figure 5. Active-Region Safe Operating Area

There are two limitations on the power handling ability of a transistor average junction temperature and second breakdown. Safe operating area curves indicate $I_{C}-V_{C E}$ limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 5 is based on $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}=150^{\circ} \mathrm{C}$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}<150^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

BDX53B, BDX53C (NPN), BDX54B, BDX54C (PNP)

Figure 6. Small-Signal Current Gain

NPN

BDX53B, 53C

Figure 7. Capacitance

PNP
BDX54B, 54C

Figure 8. DC Current Gain

Figure 9. Collector Saturation Region

BDX53B, BDX53C (NPN), BDX54B, BDX54C (PNP)

Figure 10. "On" Voltages

Figure 11. Temperature Coefficients

Figure 12. Collector Cut-Off Region

Figure 13. Darlington Schematic

ORDERING INFORMATION

Device	Package	Shipping †
BDX53BG	TO-220 (Pb-Free)	50 Units / Rail
BDX53CG	TO-220 (Pb-Free)	50 Units / Rail
BDX54BG	TO-220 (Pb-Free)	50 Units / Rail
BDX54CG	TO-220 (Pb-Free)	50 Units / Rail

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DATE 05 NOV 2019
NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
2. CONTROLLING DIMENSION: INCHES
3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.
4. MAX WIDTH FOR F102 DEVICE $=1.35 \mathrm{MM}$

DIM	INCHES		MILLIMETERS	
	MIN.	MAX.	MIN.	MAX.
A	0.570	0.620	14.48	15.75
B	0.380	0.415	9.66	10.53
C	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
H	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	----	1.15	---
Z	---	0.080	---	2.04

STYLE 1:	
PIN 1.	BASE
2.	COLLECTOR
3.	EMITTER
4.	COLLECTOR
STYLE 5:	
PIN 1.	GATE
2.	DRAIN
3.	SOURCE
4.	DRAIN
STYLE 9:	
PIN 1.	GATE
2.	COLLECTOR
3.	EMITTER
4.	COLLECTOR

STYLE 2:	
PIN 1.	BASE
2.	EMITTER
3.	COLLECTOR
4.	EMITTER
STYLE 6:	
PIN 1.	ANODE
2.	CATHODE
3.	ANODE
4.	CATHODE
STYLE 10:	
PIN 1.	GATE
2.	SOURCE
3.	DRAIN
4.	SOURCE

STYLE 3:		STYLE 4:	
PIN 1.	CATHODE	PIN 1.	MAIN TERMINAL 1
2.	ANODE	2.	MAIN TERMINAL 2
3.	GATE	3.	GATE
4.	ANODE	4.	MAIN TERMINAL 2
STYLE 7:		STYLE 8:	
PIN 1.	CATHODE	PIN 1.	CATHODE
2.	ANODE	2.	ANODE
3.	CATHODE	3.	EXTERNAL TRIP/DELAY
4.	ANODE	4.	ANODE
STYLE 11:	STYLE 12.		
PIN 1.	DRAIN	PIN 1. MAIN TERMINAL 1	
2. SOURCE	2. MAIN TERMINAL 2		
3.	GATE	3.	GATE
4.	SOURCE	4. NOT CONNECTED	

| DOCUMENT NUMBER: | 98ASB42148B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-220 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

Scale 1:1

TO-220-3LD
CASE 340AT
ISSUE A

SUPPLIER "A" PACKAGE SHAPE

DATE 03 OCT 2017

NOTES:

A) REFERENCE JEDEC, TO-220, VARIATION AB
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS COMMON TO ALL PACKAGE SUPPLIERS EXCEPT WHERE NOTED [].
D) LOCATION OF MOLDED FEATURE MAY VARY (LOWER LEFT CORNER, LOWER CENTER AND CENTER OF THE PACKAGE)
E DOES NOT COMPLY JEDEC STANDARD VALUE.
F) "A1" DIMENSIONS AS BELOW:

SINGLE GAUGE $=0.51-0.61$
DUAL GAUGE $=1.10-1.45$
G PRESENCE IS SUPPLIER DEPENDENT
H) SUPPLIER DEPENDENT MOLD LOCKING HOLES IN HEATSINK.

DOCUMENT NUMBER:	98AON13818G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-220-3LD	PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Darlington Transistors category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
NJVMJD128T4G 281287X BDV64B NJVMJD117T4G LB1205-L-E 2N6053 MPSA14 TIP140 MPSA13 TIP127L-BP 2N6383
ULN2003ACM/TR 2N7371 2N6058 2N6059 2N6051 MJ2501 MJ3001 2SB1560 2SB852KT146B 2SD2560 TIP112TU BCV27 MMBTA13-TP MMSTA28T146 NTE2557 NJVNJD35N04T4G MPSA29-D26Z FJB102TM BSP61H6327XTSA1 BU941ZPFI

2SD1980TL NTE2350 NTE245 NTE246 NTE2649 NTE46 NTE98 ULN2003ADR2G NTE2344 NTE2349 NTE2405 NTE243 NTE244 NTE247 NTE248 NTE249 NTE253 NTE2548 NTE261

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

