NPN Small-Signal Darlington Transistor

BSP52T1G, BSP52T3G, SBSP52T1G

This NPN small signal Darlington transistor is designed for use in switching applications, such as print hammer, relay, solenoid and lamp drivers. The device is housed in the SOT-223 package, which is designed for medium power surface mount applications.

Features

- The SOT-223 Package can be soldered using wave or reflow. The formed leads absorb thermal stress during soldering, eliminating the possibility of damage to the die
- Available in 12 mm Tape and Reel

Use BSP52T1 to Order the 7 Inch/1000 Unit Reel

- PNP Complement is BSP62T1
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable

MAXIMUM RATINGS ($T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CES }}$	80	V
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	90	V
Emitter-Base Voltage	$\mathrm{V}_{\text {Ebo }}$	5.0	V
Collector Current	I_{C}	1.0	A
Total Power Dissipation (Note 1) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{aligned} & 0.8 \\ & 6.4 \end{aligned}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Total Power Dissipation (Note 2) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 1.25 \\ 10 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance (Note 1) Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	156	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance (Note 2) Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Temperature for Soldering Purposes Time in Solder Bath	T_{L}	260 10	${ }^{\circ} \mathrm{C}$ Sec

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Device mounted on a FR-4 glass epoxy printed circuit board using minimum recommended footprint.
2. Device mounted on a FR-4 glass epoxy printed circuit board using $1 \mathrm{~cm}^{2}$ pad.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

MEDIUM POWER NPN SILICON SURFACE MOUNT DARLINGTON TRANSISTOR

EMITTER 3

A
A = Assembly Location
Y = Year
W = Work Week
AS3 = Specific Device Code

- = Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
BSP52T1G, SBSP52T1G	SOT-223 (Pb-Free)	$1000 /$ Tape \& Reel
BSP52T3G	SOT-223 (Pb-Free)	$4000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristics	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{\text {(BR) }} \mathrm{CBO}$	90	-	-	V
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{\text {(BR)EBO }}$	5.0	-	-	V
$\begin{aligned} & \text { Collector-Emitter Cutoff Current } \\ & \qquad\left(\mathrm{V}_{\mathrm{CE}}=80 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0\right) \end{aligned}$	$\mathrm{I}_{\text {ces }}$	-	-	10	$\mu \mathrm{A}$
Emitter-Base Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=4.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\right)$	$l_{\text {ebo }}$	-	-	10	$\mu \mathrm{A}$

ON CHARACTERISTICS (Note 3)

$\begin{aligned} & \text { DC Current Gain } \\ & \left(I_{C}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 1000 \\ & 2000 \end{aligned}$	-		-
Collector-Emitter Saturation Voltage $\left(\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	-	1.3	V
Base-Emitter Saturation Voltage $\left(\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	-	-	1.9	V

SWITCHING CHARACTERISTICS

Rise Time $\left(V_{C C}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=0.15 \mathrm{~mA}\right)$	t_{r}	-	155	-	ns
Delay Time $\left(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=0.15 \mathrm{~mA}\right)$	t_{d}	-	205	-	ns
Storage Time $\left(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=0.15 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 2}=0.15 \mathrm{~mA}\right)$	t_{s}	-	420	-	ns
Fall Time $\left(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=0.15 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 2}=0.15 \mathrm{~mA}\right)$	t_{f}	-	365	-	ns

3. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$

BSP52T1G, BSP52T3G, SBSP52T1G

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Figure 1. DC Current Gain

Figure 2. Collector-Emitter Saturation Voltage

Figure 3. Base-Emitter Saturation Voltage

I_{C}, COLLECTOR CURRENT (mA)
Figure 4. Base-Emitter ON Voltage

Figure 5. Capacitance

SOT-223 (TO-261)
CASE 318E-04
ISSUE R
SCALE 1:1
DATE 02 OCT 2018

NDTES:

1. DIMENSIDNING AND TDLERANCING PER ASME Y14.5M, 1994.
2. CDNTRDLLING DIMENSIDN: MILLIMETERS
3. DIMENSIDNS D \& E DD NDT INCLUDE MDLD FLASH, PRDTRUSIDNS DR GATE BURRS. MILD FLASH, PRDTRUSIDNS IR GATE BURRS SHALL NUT EXCEED 0.200MM PER SIDE.
4. DATUMS A AND B ARE DETERMINED AT DATUM H.
5. A1 IS DEFINED AS THE VERTICAL DISTANCE fram the seating plane ta the lowest point gf the package body.
6. POSITIDNAL TOLERANCE APPLIES TD DIMENSIDNS b AND bl.

	MILLIMETERS		
DIM	MIN.	NDM.	MAX.
A	1.50	1.63	1.75
A1	0.02	0.06	0.10
b	0.60	0.75	0.89
b1	2.90	3.06	3.20
c	0.24	0.29	0.35
D	6.30	6.50	6.70
E	3.30	3.50	3.70
e	2.30 BSC		
L	0.20	---	---
L1	1.50	1.75	2.00
He	6.70	7.00	7.30
$\boldsymbol{\theta}$	0°	---	10°

RECDMMENDED MDUNTING FOUTPRINT

| DOCUMENT NUMBER: | 98ASB42680B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-223 (TO-261) | PAGE 1 OF 2 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

| STYLE 1: | STYLE 2: | STYLE 3: | STYLE 4: | PIN 1. SOURCE |
| :---: | :---: | :---: | :---: | :---: | STYLE 5: PIN 1. DRAIN

GENERIC MARKING DIAGRAM*

A	$=$ Assembly Location
Y	$=$ Year
W	$=$ Work Week
XXXXX	$=$ Specific Device Code
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98ASB42680B | Electronic versions are uncontrolled except when accessed directly from the Documment Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-223 (TO-261) | PAGE 2 OF 2 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Darlington Transistors category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
NJVMJD128T4G 281287X BDV64B NJVMJD117T4G LB1205-L-E 2N6053 MPSA14 TIP140 MPSA13 TIP127L-BP 2N6383
ULN2003ACM/TR 2N7371 2N6058 2N6059 2N6051 MJ2501 MJ3001 2SB1560 2SB852KT146B 2SD2560 TIP112TU BCV27 MMBTA13-TP MMSTA28T146 NTE2557 NJVNJD35N04T4G MPSA29-D26Z FJB102TM BSP61H6327XTSA1 BU941ZPFI

2SD1980TL NTE2350 NTE245 NTE246 NTE2649 NTE46 NTE98 ULN2003ADR2G NTE2344 NTE2349 NTE2405 NTE243 NTE244 NTE247 NTE248 NTE249 NTE253 NTE2548 NTE261

