
BTA16-600BW3G, BTA16-800BW3G,

Thyristors

Pin Out

Description

Designed for high performance full—wave ac control applications where high noise immunity and high commutating di/dt are required.

Features

- Blocking Voltage to 800 V
- On-State Current Rating of 16 A RMS at 80°C
 Uniform Gate Trigger Currents in Three Quadrants
- High Immunity to dV/dt 1500 V/µs minimum at 125°C
- Minimizes Snubber Networks for Protection
- Industry Standard TO-220AB Package
- High Commutating dl/dt 4.0 A/ms minimum at 125°C
- Internally Isolated (2500 V_{BMS})
- These Devices are Pb-Free

Functional Diagram

Additional Information

Samples

Maximum Ratings (T _J = 25°C unless otherwise noted)					
Rating		Symbol	Value	Unit	
Peak Repetitive Off-State Voltage (Note 1) (Gate Open, Sine Wave 50 to 60 Hz, T _J = -40° to 125°C) BTA16–600BW3G BTA16–800BW3G		V _{drm} , V _{rrm}	600 800	V	
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, T _C = 80°C)		I _{T (RMS)}	16	А	
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _C = 25°C)		I _{TSM}	170	А	
Circuit Fusing Consideration (t = 8.3 ms)		l²t	120	A ² sec	
Non-Repetitive Surge Peak Off-State Voltage (T _J = 25°C, t = 10ms)		V_{DSM}/V_{RSM}	V _{DSM} /V _{RSM} +100	V	
Peak Gate Current ($T_J = 125$ °C, t = 20ms)		I _{GM}	4.0	А	
Peak Gate Power (Pulse Width \leq 1.0 μ s, T _C = 80°C)		P _{G(AV)}	20	W	
Average Gate Power (T _J = 125°C)		$P_{G(AV)}$	1.0	W	
Operating Junction Temperature Range		T _J	-40 to +125	°C	
Storage Temperature Range		T _{stg}	-40 to +125	°C	
RMS Isolation Voltage (t = 300 ms, R.H. ≤ 30%, T _s = 25°C)		Vina	2500	V	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied.

Thermal Characteristics

	Symbol	Value	Unit	
Thermal Resistance,	Junction-to-Case (AC) Junction-to-Ambient	R _{ejc} R _{eja}	2.5 60	°C/W
Maximum Lead Temperature for Solder 10 seconds	T _L	260	°C	

Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

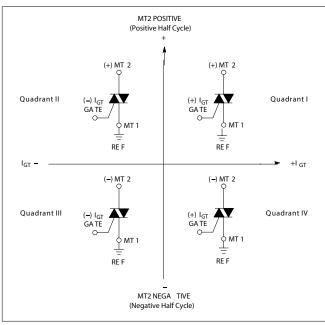
Electrical Characteristics - OFF (T₁ = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Blocking Current	T, = 25°C	I _{DRM} ,	-	-	0.005	m ^
$(V_D = V_{DRM} = V_{RRM}; Gate Open)$	T _J = 125°C	IRRM	-	-	2.0	mA

Electrical Characteristics - **ON** $(T_j = 25^{\circ}\text{C unless otherwise noted}; Electricals apply in both directions)$

Characteristic		Symbol	Min	Тур	Max	Unit
Forward On-State Voltage (Note 2) ($I_{TM} = \pm 22.5 \text{ A Peak}$)	'	V_{TM}	-	-	1.55	V
	MT2(+), G(+)		2.5	_	50	mA
Gate Trigger Current (Continuous dc) ($V_D = 12 \text{ V}, R_L = 30 \Omega$)	MT2(+), G(-)	I _{GT}	2.5	_	50	
	MT2(-), G(-)		2.5	_	50	
Holding Current ($V_D = 12 \text{ V}$, Gate Open, Initiating Current = $\pm 150 \text{ mA}$)		I _H	-	_	60	mA
	MT2(+), G(+)	IL	-	_	70	mA
Latching Current ($V_D = 12 \text{ V}, I_G = 50 \text{ mA}$)	MT2(+), G(-)		-	_	90	
	MT2(-), G(-)		-	-	70	
	MT2(+), G(+)	V _{GT}	0.5	_	1.7	V
Gate Trigger Voltage ($V_D = 12 \text{ V}, R_L = 30 \Omega$)	MT2(+), G(-)		0.5	-	1.1	
	MT2(-), G(-)		0.5	-	1.1	
	MT2(+), G(+)		0.2	-	-	
Gate Non-Trigger Voltage (T _J = 125°C)	MT2(+), G(-)	t _{gt}	0.2	_	_	V
	MT2(-), G(-)		0.2	_	-	

^{2.} Indicates Pulse Test: Pulse Width \leq 2.0 ms, Duty Cycle \leq 2 % .


Dynamic Characteristics

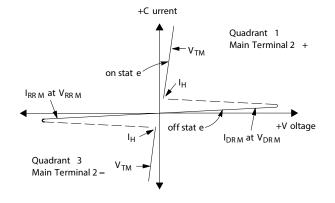
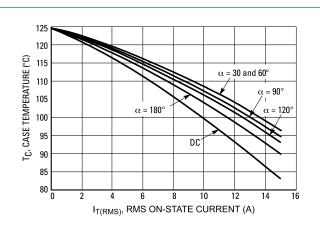
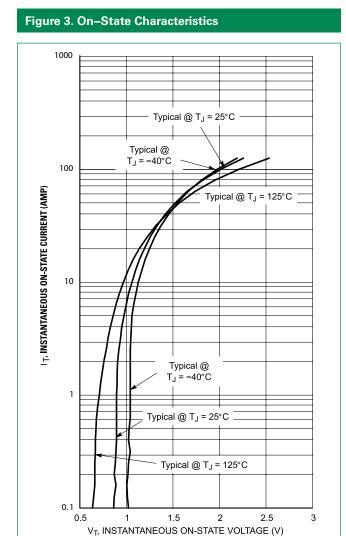
Characteristic	Symbol	Min	Тур	Max	Unit
Rate of Change of Commutating Current, See Figure 10. (Gate Open, $T_J = 125^{\circ}$ C, No Snubber)	(dl/dt)c	4.0	_	_	A/ms
Critical Rate of Rise of On–State Current ($T_J = 125^{\circ}\text{C}$, $f = 120$ Hz, $I_G = 2 \times I_{GT'}$ tr ≤ 100 ns)	dl/dt	_	_	50	A/µs
Critical Rate of Rise of Off-State Voltage ($V_D = 0.66 \times V_{DRM}$, Exponential Waveform, Gate Open, $T_J = 125$ °C)	dV/dt	1500	_	_	V/µs

Voltage Current Characteristic of SCR

Symbol	Parameter		
V_{DRM}	Peak Repetitive Forward Off State Voltage		
I _{DRM}	Peak Forward Blocking Current		
V _{RRM}	Peak Repetitive Reverse Off State Voltage		
I _{RRM}	Peak Reverse Blocking Current		
V _{TM}	Maximum On State Voltage		
I _H	Holding Current		

Quadrant Definitions for a Triac

All polarities are referenced to MT1.
With in—phase signals (using standard AC lines) quadrants I and III are used

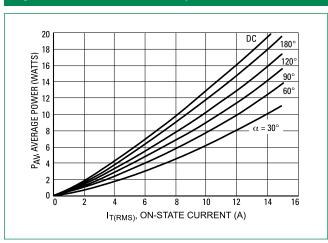

Figure 2. On-State Power Dissipation

Figure 1. RMS Current Derating

Thyristors

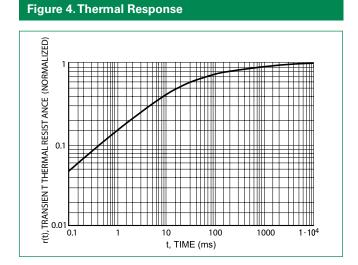
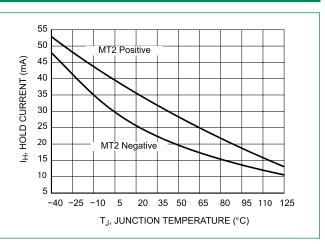
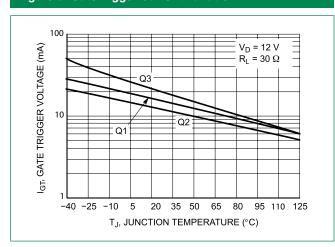




Figure 5. Hold Current Variation

Figure 6. Gate Trigger Current Variation

Thyristors

Figure 7. Gate Trigger Voltage Variation

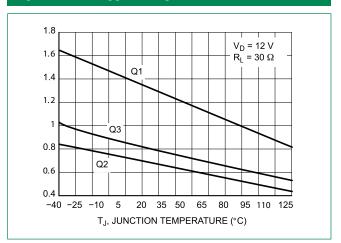


Figure 8. Critical Rate of Rise of Off-State Voltage (Exponential Waveform)

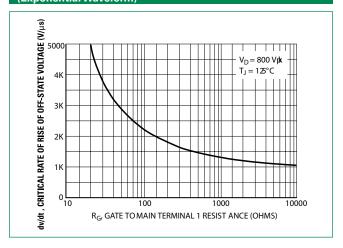
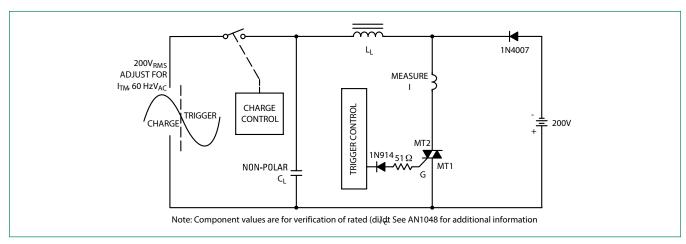
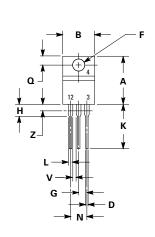
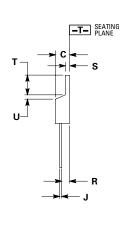
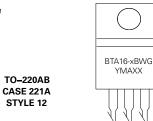



Figure 9. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)




Note: Component values are for verification of rated (di/dt)c. See AN1048 for additional information

$Surface\ Mount-600V-800V\ >\ BTA16-600BW3G,\ BTA16-800BW3G,$


Dimensions

Part Marking System

x =6 or 8 Y =Year

Y =Year M =Month

A =Assembly Site

XX =Lot Serial Code

G =Pb-Free Package

D:	Inches		Millin	neters
Dim	Min	Max	Min	Max
Α	0.590	0.620	14.99	15.75
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.41	2.67
Н	0.110	0.130	2.79	3.30
J	0.018	0.024	0.46	0.61
K	0.540	0.575	13.72	14.61
L	0.060	0.075	1.52	1.91
N	0.195	0.205	4.95	5.21
Q	0.105	0.115	2.67	2.92
R	0.085	0.095	2.16	2.41
s	0.045	0.060	1.14	1.52
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	_
Z	_	0.080	_	2.04

Pin Assignment				
1	Main Terminal 1			
2	Main Terminal 2			
3	Gate			
4	No Connection			

Ordering Information					
Device	Package	Shipping			
BTA16-600BW3G	TO-220AB (Pb-Free)	500 Units / Rail			
BTA16-800BW3G	TO-220AB (Pb-Free)	500 Units / Rail			

^{1.} DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

CONTROLLING DIMENSION: INCH.
 DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

CTA08-1000CW CTB24-800BW CTA08-1000C CTA12-800BWPT CTA16-1000B CTB24-800B BT137-600-0Q 5615 OT415Q 2N6075A

NTE5629 NTE5688 CTB08-400CW D31410 BTA425Z-800BTQ KS100N12 TOPT16-800C0,127 OT408,135 BT134-800E BT136D

BTB16Q-600BW Z0409MF BTA04-600B BTA06-600BRG BTA06-800BWRG BTA08-600BRG BTA08-800B BT136-600,127

MAC97A6,116 BT137-600E,127 BTB16-600CW3G BTB16-600CW3G Z0109MN,135 T825T-6I T1220T-6I NTE5638 ACST1235-8FP

BT136X-600E,127 MAC4DLM-1G BT134-600D,127 BTA08-600BW3G NTE56008 NTE56017 NTE56018 NTE56059 NTE5608

NTE5609 NTE5656 NTE56020 NTE56022