
Through Hole Radial – 800V

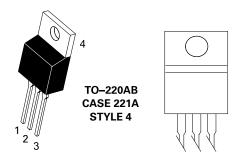
Additional Information

Accessories

Samples

Description

The BTB08 is designed for high performance full-wave AC control applications where high noise immunity and high commutating di/dt are required.


Features

- Blocking Voltage to 800 V
- On-State Current Rating of 8 Amperes RMS at 25°C
- Uniform Gate Trigger Currents in Three Quadrants
- High Immunity to dV/dt 2000 V/µs minimum at 125°C
- Minimizes Snubber Networks for Protection
- Industry Standard TO-220AB Package
- High Commutating dl/dt 4 A/ms minimum at 125°C
- These are Pb-Free Devices

Functional Diagram

Pin Out

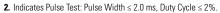
Through Hole Radial - 800V

Maximum Ratings (TJ = 25°C unless otherwise noted)

Rating		Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (Gate Open, Sine Wave 50 to 60 Hz, $T_J = -40^{\circ}$ to 125°C)	BTB08-600BW3G BTB08-800BW3G	V _{DRM} , V _{RRM}	600 800	V
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, $T_c = 80$	0°C)	I _{T (RMS)}	18	А
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T_c = 25°C)		I _{TSM}	90	А
Circuit Fusing Consideration (t = 10 ms)		l²t	36	A²sec
Non–Repetitive Surge Peak Off–State Voltage ($T_J = 25^{\circ}$ C, t = 10 ms)	$V_{\rm DSM}/V_{\rm RSM}$	V _{DSM} /V _{RSM} +100	V	
Peak Gate Current ($T_J = 125$ °C, $t = 20$ ms)	I _{GM}	4.0	W	
Peak Gate Power (Pulse Width \leq 1.0 μ s, T_{c} = 80°C)	P _{GM}	20	W	
Average Gate Power (T _J = 125°C)	$P_{G(AV)}$	1.0	W	
Operating Junction Temperature Range	T _J	-40 to +125	°C	
Storage Temperature Range	T_{stg}	-40 to +150	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Thermal Characteristics


Rating	Symbol	Value	Unit	
Thermal Resistance,	Junction-to-Case (AC) Junction-to-Ambient	R _{eJC} R _{eJA}	2.5 60	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds		T_{\scriptscriptstyleL}	260	°C

Electrical Characteristics - OFF (TJ = 25°C unless otherwise noted; Electricals apply in both directions)

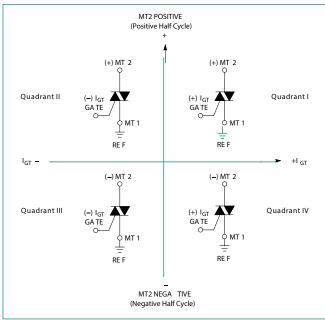
Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Blocking Current	T ₁ = 25°C	I _{DRM} ,	-	-	0.005	mΛ
$(V_D = V_{DRM} = V_{RRM}; Gate Open)$	$T_{J}^{3} = 125^{\circ}C$	I	-	-	1.0	mA

Electrical Characteristics - ON $(TJ = 25^{\circ}C)$ unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Forward On-State Voltage (Note 2) ($I_{TM} = \pm 11$ A Peak)		V_{TM}	-	-	1.55	V
	MT2(+), G(+)		2.5	_	50	mA
Gate Trigger Current (Continuous dc) $(V_D = 12 \text{ V}, R_L = 30 \Omega)$	MT2(+), G(-)	l _{gt}	2.5	_	50	
	MT2(-), G(-)		2.5	_	50	
Holding Current $(V_D = 12 \text{ V}, \text{ Gate Open, Initiating Current} = \pm 100 \text{ mA})$		I _H	-	_	50	mA
	MT2(+), G(+)		-	_	70	mA
Latching Current ($V_D = 24 \text{ V}$, $I_G = 60 \text{ mA}$)	MT2(+), G(-)	I _L	_	_	90	
	MT2(-), G(-)		_	_	70	
	MT2(+), G(+)		0.5	_	1.7	
Gate Trigger Voltage ($V_D = 12 \text{ V}, R_1 = 30 \Omega$)	MT2(+), G(-)	V_{GT}	0.5	_	1.1	V
	MT2(-), G(-)	G.	0.5	_	1.1	
	MT2(+), G(+)		0.2	_	_	
Gate Non-Trigger Voltage (T _J = 125°C)	MT2(+), G(-)	V_{gd}	0.2	_	_	V
- -	MT2(-), G(-)	35	0.2	_	_	

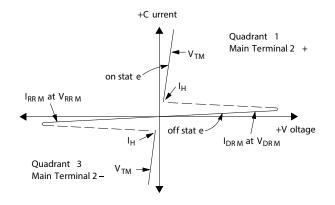
^{1.} V_{cott} and V_{cott} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Through Hole Radial – 800V


Dynamic Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Rate of Change of Commutating Current, See Figure 10. (Gate Open, $T_J = 125^{\circ}$ C, No Snubber)	(dl/dt)c	4.0	-	-	A/ms
Critical Rate of Rise of On–State Current ($T_J = 125^{\circ}\text{C}$, $f = 120$ Hz, $I_G = 2 \times I_{GT}$, tr ≤ 100 ns)	dl/dt	_	_	50	A/µs
Critical Rate of Rise of Off-State Voltage $(V_D = 0.66 \times V_{DRM'}, Exponential Waveform, Gate Open, T_J = 125°C)$	dV/dt	2000	_	_	V/µs

Voltage Current Characteristic of SCR


Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I _H	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to MT1.

With in –phase signals (using standard AC lines) quadrants I and III are used

Through Hole Radial – 800V

Figure 1. RMS Current Derating

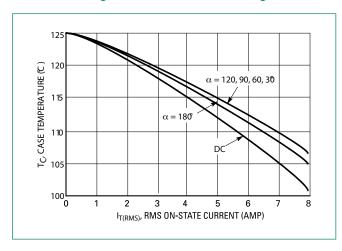


Figure 3. On-State Characteristics

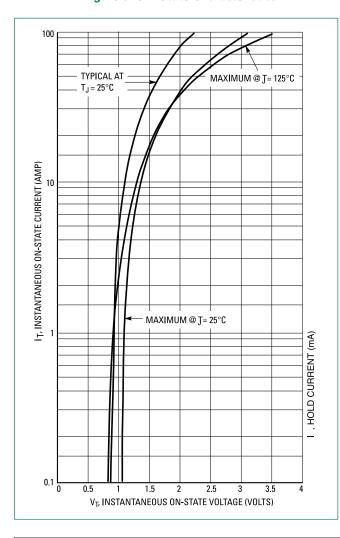
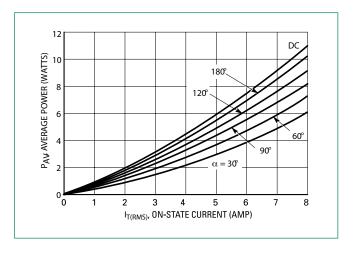



Figure 2. On-State Power Dissipation

Figure 4. Thermal Response

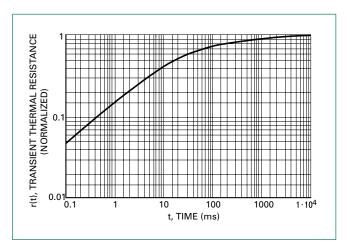
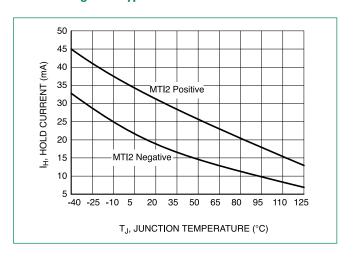



Figure 5. Typical Hold Current Variation

Through Hole Radial - 800V

Figure 6. Typical Gate Trigger Current Variation

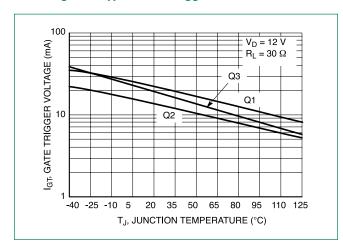


Figure 8. Critical Rate of Rise of Off-State Voltage (Exponential Waveform)

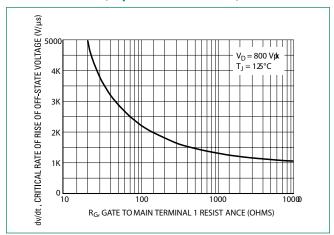


Figure 7. Typical Gate Trigger Voltage Variation

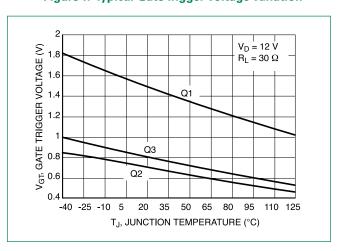
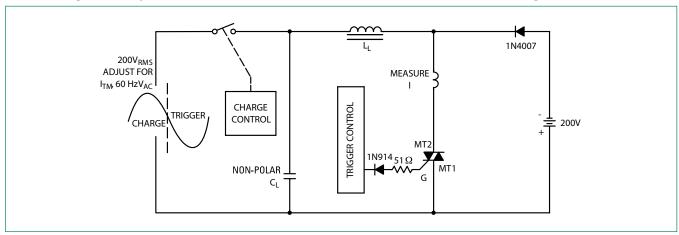
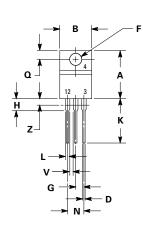
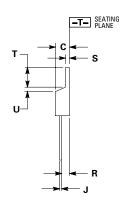
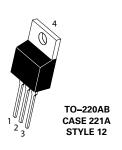
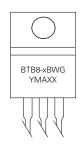



Figure 9. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)




Note: Component values are for verification of rated (di/dt)c. See AN1048 for additional information


Through Hole Radial – 800V


Dimensions

Part Marking System

x =6 or 8 Y =V22

Y = Year
M = Month
A = Assembly Site
XX = Lot Serial Code

G =Pb-Free Package

Pin Assignment

TO-220AB

(Pb-Free)

Main Terminal 1 Main Terminal 2

> Shipping 1000 Units / Box

1000 Units / Box

D:	Inc	hes	Millimeters		
Dim	Min	Max	Min	Max	
Α	0.590	0.620	14.99	15.75	
В	0.380	0.420	9.65	10.67	
С	0.178	0.188	4.52	4.78	
D	0.025	0.035	0.64	0.89	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.41	2.67	
Н	0.110	0.130	2.79	3.30	
J	0.018	0.024	0.46	0.61	
K	0.540	0.575	13.72	14.61	
L	0.060	0.075	1.52	1.91	
N	0.195	0.205	4.95	5.21	
Q	0.105	0.115	2.67	2.92	
R	0.085	0.095	2.16	2.41	
S	0.045	0.060	1.14	1.52	
T	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
V	0.045		1.15		
Z		0.080		2.04	

3	Ga	ite		
4	No Connection			
Ordering Infor	mation			
Device	Package	:		
BTB08-600BW3G	TO-220AB (Pb-Free)	100		

BTB08-800BW3G

^{1.} Dimensioning and tolerancing per ansi y14.5m, 1982.

Controlling dimension: inch.
 Dimension z defines a zone where all body and lead irregularities are allowed.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

CTA08-1000CW CTB24-800BW CTA08-1000C CTA12-800BWPT CTA16-1000B CTB24-800B BT137-600-0Q 5615 OT415Q 2N6075A

NTE5629 NTE5688 CTB08-400CW D31410 BTA425Z-800BTQ KS100N12 TOPT16-800C0,127 OT408,135 BT134-800E BT136D

BTB16Q-600BW Z0409MF BTA04-600B BTA06-600BRG BTA06-800BWRG BTA08-600BRG BTA08-800B BT136-600,127

MAC97A6,116 BT137-600E,127 BTB16-600CW3G BTB16-600CW3G Z0109MN,135 T825T-6I T1220T-6I NTE5638 ACST1235-8FP

BT136X-600E,127 MAC4DLM-1G BT134-600D,127 BTA08-600BW3G NTE56008 NTE56017 NTE56018 NTE56059 NTE5608

NTE5609 NTE5656 NTE56020 NTE56022