# **ON Semiconductor**

## Is Now



To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

## **BUV27**

# **NPN Silicon Power Transistor**

This device is designed for use in switching regulators and motor control.

## **Features**

- Low Collection Emitter Saturation Voltage
- Fast Switching Speed
- These Devices are Pb-Free and are RoHS Compliant\*

### **MAXIMUM RATINGS**

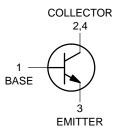
| Rating                                                                | Symbol                            | Value       | Unit |
|-----------------------------------------------------------------------|-----------------------------------|-------------|------|
| Collector–Emitter Sustaining Voltage                                  | V <sub>CEO</sub>                  | 120         | Vdc  |
| Collector–Emitter Breakdown Voltage                                   | V <sub>CBO</sub>                  | 240         | Vdc  |
| Emitter-Base Voltage                                                  | V <sub>EBO</sub>                  | 7.0         | Vdc  |
| Collector Current - Continuous                                        | I <sub>C</sub>                    | 12          | Adc  |
| Collector Current – Peak (Note 1)                                     | I <sub>CM</sub>                   | 20          | Adc  |
| Base Current                                                          | I <sub>B</sub>                    | 4.0         | Adc  |
| Total Device Dissipation (T <sub>C</sub> = 25°C)<br>Derate above 25°C | P <sub>D</sub>                    | 70<br>0.56  | W/°C |
| Operating and Storage Temperature                                     | T <sub>J</sub> , T <sub>stg</sub> | - 65 to 150 | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle ≤ 10%.

## THERMAL CHARACTERISTICS

| Rating                                                   | Symbol                        | Max          | Unit |
|----------------------------------------------------------|-------------------------------|--------------|------|
| Thermal Resistance, Junction-to-Case Junction-to-Ambient | $R_{	heta JC} \ R_{	heta JA}$ | 1.78<br>62.5 | °C/W |




## ON Semiconductor®

www.onsemi.com

## POWER TRANSISTOR 12 AMPERES **120 VOLTS** 70 WATTS

## **SCHEMATIC**



# **DIAGRAM**

TO-220 **CASE 221A** STYLE 1



**MARKING** 

BUV27 = Device Code

= Assembly Location

= Year WW = Work Week G = Pb-Free Package

### ORDERING INFORMATION

| Device | Package             | Shipping    |
|--------|---------------------|-------------|
| BUV27G | TO-220<br>(Pb-Free) | 50 per Rail |

<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

## **BUV27**

## **ELECTRICAL CHARACTERISTICS** ( $T_C = 25^{\circ}C$ unless otherwise noted)

| Symbol                                              | Parameter                                             | Test Conditions                                                                                                                                   | Min | Тур                | Max                | Unit           |
|-----------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|--------------------|----------------|
| I <sub>CER</sub>                                    | Collector Cut–off<br>Current (R <sub>BE</sub> = 50 Ω) | V <sub>CE</sub> = 240 V, T <sub>C</sub> = 125°C                                                                                                   |     |                    | 3.0                | mA             |
| I <sub>CEX</sub>                                    | Collector Cut-off Current                             | V <sub>CE</sub> = 240 V, V <sub>BE</sub> = -1.5 V, T <sub>C</sub> = 125°C                                                                         |     |                    | 1.0                | mA             |
| I <sub>EBO</sub>                                    | Emitter Cut-off Current (I <sub>C</sub> = 0)          | V <sub>BE</sub> = 5 V                                                                                                                             |     |                    | 1.0                | mA             |
| V <sub>CEO(sus)</sub>                               | Collector–Emitter Sustaining Voltage                  | I <sub>C</sub> = 0.2 A, L = 25 mH                                                                                                                 | 120 |                    |                    | V              |
| V <sub>EBO</sub>                                    | Emitter-Base Voltage (I <sub>C</sub> = 0)             | I <sub>E</sub> = 50 mA                                                                                                                            | 7.0 |                    | 30                 | V              |
| V <sub>CE(sat)</sub><br>(Note 2)                    | Collector–Emitter Saturation Voltage                  | I <sub>C</sub> = 4 A, I <sub>B</sub> = 0.4 A<br>I <sub>C</sub> = 8 A, I <sub>B</sub> = 0.8 A                                                      |     |                    | 0.7<br>1.5         | V              |
| V <sub>BE(sat)</sub><br>(Note 2)                    | Base–Emitter Saturation Voltage                       | I <sub>C</sub> = 8 A, I <sub>B</sub> = 0.8 A                                                                                                      |     |                    | 2.0                | V              |
| Resistive L                                         | oad                                                   |                                                                                                                                                   |     |                    |                    |                |
| t <sub>on</sub><br>t <sub>s</sub><br>t <sub>f</sub> | Turn-on Time<br>Storage Time<br>Fall Time             | $V_{CC} = 90 \text{ V, } I_{C} = 8 \text{ A}$ $V_{BE} = -6 \text{ V, } I_{B1} = 0.8 \text{ A}$ $R_{BB} = 3.75 \Omega$                             |     | 0.4<br>0.5<br>0.12 | 0.8<br>1.2<br>0.25 | ms<br>μs<br>μs |
| Inductive Load                                      |                                                       |                                                                                                                                                   |     |                    |                    |                |
| t <sub>s</sub><br>t <sub>f</sub>                    | Storage Time<br>Fall Time                             | $V_{CC} = 90 \text{ V, } I_{C} = 8 \text{ A}$ $I_{B1} = 0.8 \text{ A, } V_{BE} = -5 \text{ V}$ $L_{R} = 1 \mu \text{H}$                           |     | 0.6<br>0.04        |                    | μS             |
| t <sub>s</sub><br>t <sub>f</sub>                    | Storage Time<br>Fall Time                             | $V_{CC} = 90 \text{ V}, I_{C} = 8 \text{ A}$ $I_{B1} = 0.8 \text{ A}, V_{BE} = -5 \text{ V}$ $L_{B} = 1 \mu\text{H}, T_{J} = 125^{\circ}\text{C}$ |     |                    | 2.0<br>0.15        |                |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulsed: Pulse Duration =  $300 \mu s$ , Duty Cycle = 2%

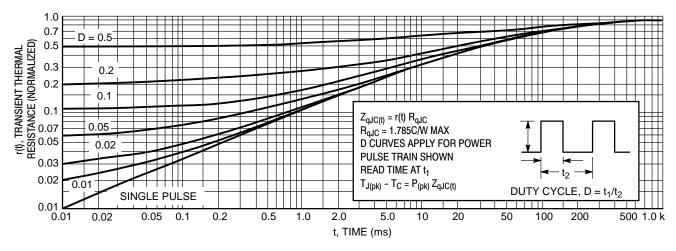




Figure 1. Thermal Response



There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate  $I_C - V_{CE}$  limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation then the curves indicate.

The data of Figures 2 is based on  $T_{J(pk)}=150^{\circ}C$ ;  $T_C$  is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided  $T_{J(pk)}$  < 150°C.  $T_{J(pk)}$  may be calculated from the data in Figure 1. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

Figure 2. Forward Bias Safe Operating Area

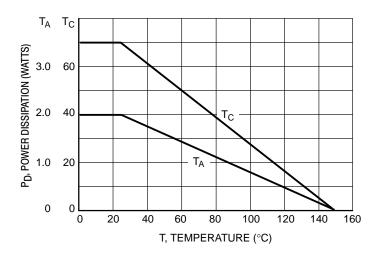
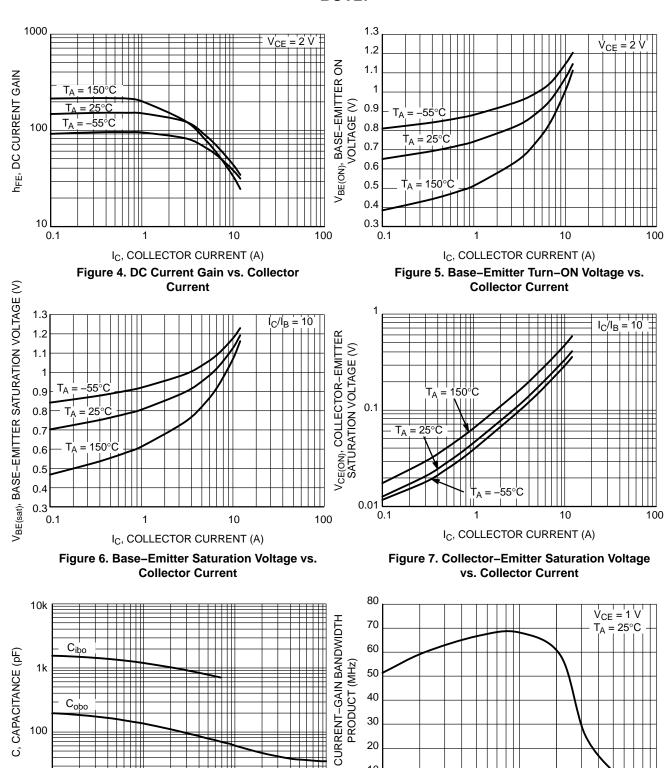




Figure 3. Power Derating



I<sub>C</sub>, COLLECTOR CURRENT (A) Figure 9. Current Gain Bandwidth Product vs. **Collector Current** 

1

10

100

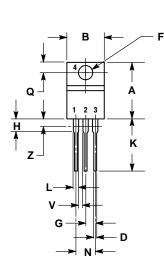
10

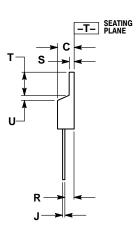
1

V<sub>R</sub>, REVERSE VOLTAGE (V) Figure 8. Capacitance

10

0.1


20 10


> 0 0.1

### BUV27

### PACKAGE DIMENSIONS

**TO-220** CASE 221A-09 ISSUE AH





#### NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

|     | INCHES |       | MILLIMETERS |       |
|-----|--------|-------|-------------|-------|
| DIM | MIN    | MAX   | MIN         | MAX   |
| Α   | 0.570  | 0.620 | 14.48       | 15.75 |
| В   | 0.380  | 0.415 | 9.66        | 10.53 |
| С   | 0.160  | 0.190 | 4.07        | 4.83  |
| D   | 0.025  | 0.038 | 0.64        | 0.96  |
| F   | 0.142  | 0.161 | 3.61        | 4.09  |
| G   | 0.095  | 0.105 | 2.42        | 2.66  |
| Н   | 0.110  | 0.161 | 2.80        | 4.10  |
| J   | 0.014  | 0.024 | 0.36        | 0.61  |
| K   | 0.500  | 0.562 | 12.70       | 14.27 |
| L   | 0.045  | 0.060 | 1.15        | 1.52  |
| N   | 0.190  | 0.210 | 4.83        | 5.33  |
| Q   | 0.100  | 0.120 | 2.54        | 3.04  |
| R   | 0.080  | 0.110 | 2.04        | 2.79  |
| S   | 0.045  | 0.055 | 1.15        | 1.39  |
| Т   | 0.235  | 0.255 | 5.97        | 6.47  |
| U   | 0.000  | 0.050 | 0.00        | 1.27  |
| ٧   | 0.045  |       | 1.15        |       |
| Z   |        | 0.080 |             | 2.04  |

STYLE 1:

PIN 1. BASE

2. COLLECTOR

3. EMITTER

4. COLLECTOR

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale

N. American Technical Support: 800-282-9855 Toll Free

## **PUBLICATION ORDERING INFORMATION**

### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

USA/Canada

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E

NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13

NTE15 NTE16001