Voltage Regulators, Peak Power Zener Surge Rated, 600 Watt

BZG03C15 Series

The SMA series is supplied in ON Semiconductor's exclusive, cost-effective, highly reliable SURMETIC ${ }^{T M}$ package and is ideally suited for use in communication systems, automotive, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications. This new line of 1.5 watt Zener diodes offers the following advantages:

Specification Features

- Standard Zener Breakdown Voltage - 15 V to 150 V
- Peak Power 600 Watts @ $100 \mu \mathrm{~s}$
- ESD Rating of Class 3 (> 16 KV) per Human Body Model
- Response Time is Typically < 1.0 ns
- Flat Handling Surface for Accurate Placement
- Package Design for Top Slide or Bottom Circuit Board Mounting
- Low Profile Package
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Mechanical Characteristics

CASE: Void-free, transfer-molded plastic
FINISH: All external surfaces are corrosion resistant and leads are readily solderable
MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:
$260^{\circ} \mathrm{C}$ for 10 Seconds
POLARITY: Cathode indicated by molded polarity notch or polarity band
MOUNTING POSITION: Any

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

PLASTIC SURFACE MOUNT
 ZENER VOLTAGE REGULATORS 600 WATTS PEAK POWER

ORDERING INFORMATION

Device	Package	Shipping †
BZG03C15G	SMA (Pb-Free)	5000/Tape \& Reel
BZG03C150G	SMA (Pb-Free)	5000/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1) @ $\mathrm{T}_{\mathrm{L}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{P}}=100 \mu \mathrm{~s}$	$\mathrm{P}_{\mathrm{ZSM}}$	600	W
DC Power Dissipation @ $\mathrm{T}_{\mathrm{L}}=75^{\circ} \mathrm{C}$	P_{D}	1.5	W
Measured Zero Lead Length (Note 2) Derate Above $75^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Lead	$\mathrm{R}_{\text {өJL }}$	20	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Forward Surge Current (Note 3) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
Operating and Storage Temperature Range	$\mathrm{I}_{\mathrm{FSM}}$	40	A

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $100 \mu \mathrm{~s}$, non-repetitive square pulse
2. 1 in. square copper pad, FR-4 board
3. $1 / 2$ sine wave (or equivalent square wave), $\mathrm{PW}=8.3 \mathrm{~ms}$, duty cycle $=4$ pulses per minute maximum

SYMBOLS DEFINITIONS

Symbol	Parameter
I_{PP}	Maximum Reverse Peak Pulse Current
V_{C}	Clamping Voltage @ I_{PP}
$\mathrm{V}_{\mathrm{RWM}}$	Working Peak Reverse Voltage
I_{R}	Maximum Reverse Leakage Current @ $\mathrm{V}_{\mathrm{RWM}}$
V_{BR}	Breakdown Voltage @ I_{T}
I_{T}	Test Current
I_{F}	Forward Current
V_{F}	Forward Voltage @ I_{F}

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted, $\mathrm{V}_{\mathrm{F}}=1.2 \mathrm{~V}$ Max. $@ \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A}$ for all types $)$

Device*	Device Marking	$\mathrm{V}_{\mathrm{RWM}}$ (Note 4) Volts	$\frac{\mathrm{I}_{\mathrm{R}} @ \mathrm{~V}_{\mathrm{RWM}}}{\mu \mathrm{~A}}$	Breakdown Voltage				$\mathrm{Z}_{\text {zt }}$ @ IT	
				$\mathbf{V}_{\text {BR }}$ (V) (Note 5)			$\begin{gathered} @ \mathrm{I}_{\mathrm{T}} \\ \mathrm{~mA} \end{gathered}$	$\begin{gathered} \text { Typ } \\ \hline \boldsymbol{\Omega} \end{gathered}$	$\begin{gathered} \text { Max } \\ \hline \Omega \end{gathered}$
				Min	Nom	Max			
BZG03C15, G	G15	11	1	13.8	15.0	15.6	50	5.0	10.0
BZG03C150, G	G150	110	1	138	150	156	5	130	300

4. A transient suppressor is normally selected according to the working peak reverse voltage ($\mathrm{V}_{\mathrm{RWM}}$), which should be equal to or greater than the DC or continuous peak operating voltage level
5. V_{BR} measured at pulse test current I_{T} at an ambient temperature of $25^{\circ} \mathrm{C}$
*The " G " suffix indicates Pb -Free package available.

BZG03C15 Series

RATING AND TYPICAL CHARACTERISTIC CURVES

Figure 1. Pulse Rating Curve

Figure 2. Pulse Derating Curve

Figure 3. Typical Junction Capacitance

Figure 4. Steady State Power Derating

SCALE 1:1
SMA
CASE 403D
ISSUE J
DATE 22 OCT 2021

NOTES:

1. DIMENSIDNING AND TQLERANCING PER ANSI Y14.5M, 1982.
2. CDNTRDLLING DIMENSIDN: INCHES
3. DIMENSIDN b SHALL BE MEASURED WITHIN DIMENSIDN L.

DIM	MILLIMETERS			INCHES		
	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
A	1.97	2.10	2.20	0.078	0.083	0.087
A1	0.05	0.10	0.20	0.002	0.004	0.008
b	1.27	1.45	1.63	0.050	0.057	0.064
C	0.15	0.28	0.41	0.006	0.011	0.016
D	2.29	2.60	2.92	0.090	0.103	0.115
E	4.06	4.32	4.57	0.160	0.170	0.180
HE 2	4.83	5.21	5.59	0.190	0.205	0.220
L	0.76	1.14	1.52	0.030	0.045	0.060

STYLE 1:
PIN 1. CATHODE (POLARITY BAND) 2. ANODE

STYLE 2:

xxxx	$=$ Specific Device Code
A	$=$ Assembly Location
Y	$=$ Year
WW	$=$ Work Week
-	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " F ", may or may not be present. Some products may not follow the Generic Marking.

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Zener Diodes category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
RKZ13B2KG\#P1 DL5234B 1N4682 1N4691 1N4693 1N4732A 1N4733A-TR 1N4736A 1N4750A 1N4759ARL 1N5241B 1N5365B
1N5369B 1 N747A 1N959B 1N964B 1N966B 1N972B NTE149A NTE5116A NTE5121A NTE5147A NTE5152A NTE5155A
NTE5164A JANS1N4974US 1N4692 1N4700 1N4702 1N4704 1N4711 1N4714 1N4737A 1N4745ARL 1N4752A 1N4752ARL
1N4760ARL 1N5221B 1N5236B 1N5241BTR 1N5242BTR 1N5350B 1N5352B 1N961BRR1 1N964BRL RKZ5.1BKU\#P6
3SMAJ5950B-TP 3SMBJ5925B-TP TDZTR24 441774C

