ON Semiconductor ${ }^{\bullet}$

BZX79C2V4-BZX79C56

Zener Diodes

Tolerance = 5\%

DO-35 Glass case
COLOR BAND DENOTES CATHODE

Absolute Maximum Ratings * $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Value	Units
P_{D}	Power Dissipation @ $\mathrm{TL} \leq 75^{\circ} \mathrm{C}$, Lead Length $=3 / 8^{\prime \prime}$	500	mW
	Derate above $75^{\circ} \mathrm{C}$	4.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
	Operating and Storage Temperature Range	-65 to +200	${ }^{\circ} \mathrm{C}$

* These ratings are limiting values above which the serviceability of the diode may be impaired.

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Device	Zener Voltage (Note 1)			$\mathrm{Z}_{\mathrm{Z}} @ \mathrm{I}_{\mathrm{Z}} \quad(\Omega)$	Leakage Current		$\mathrm{T}_{\mathrm{C}}\left(\mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$		C (pF)
	Min.	Max.	$\mathrm{I}_{\mathrm{Z}}(\mathrm{mA})$	Max.	$\mathrm{I}_{\mathrm{R}}(\mu \mathrm{A})$	$\mathrm{V}_{\mathrm{R}}(\mathrm{V})$	Min.	Max.	$\mathrm{V}_{\mathrm{Z}}=0, \mathrm{f}=1 \mathrm{MHz}$
BZX79C2V4	2.2	2.6	5	100	100	1	-3.5	0	255
BZX79C2V7	2.5	2.9	5	100	75	1	-3.5	0	230
BZX79C3V0	2.8	3.2	5	95	50	1	-3.5	0	215
BZX79C3V3	3.1	3.5	5	95	25	1	-3.5	0	200
BZX79C3V6	3.4	3.8	5	90	15	1	-3.5	0	185
BZX79C3V9	3.7	4.1	5	90	10	1	-3.5	+0.3	175
BZX79C4V3	4	4.6	5	90	5	1	-3.5	+1	160
BZX79C4V7	4.4	5	5	80	3	2	-3.5	+0.2	130
BZX79C5V1	4.8	5.4	5	60	2	2	-2.7	+1.2	110
BZX79C5V6	5.2	6	5	40	1	2	-2	+2.5	95
BZX79C6V2	5.8	6.6	5	10	3	4	0.4	3.7	90
BZX79C6V8	6.4	7.2	5	15	2	4	1.2	4.5	85
BZX79C7V5	7	7.9	5	15	1	5	2.5	5.3	80
BZX79C8V2	7.7	8.7	5	15	0.7	5	3.2	6.2	75
BZX79C9V1	8.5	9.6	5	15	0.5	6	3.8	7	70
BZX79C10	9.4	10.6	5	20	0.2	7	4.5	8	70
BZX79C11	10.4	11.6	5	20	0.1	8	5.4	9	65
BZX79C12	11.4	12.7	5	25	0.1	8	6	10	65
BZX79C13	12.4	14.1	5	30	0.1	8	7	11	60
BZX79C15	13.8	15.6	5	30	0.05	10.5	9.2	13	55
BZX79C16	15.3	17.1	5	40	0.05	11.2	10.4	14	52
BZX79C18	16.8	19.1	5	45	0.05	12.6	12.9	16	47
BZX79C20	18.8	21.2	5	55	0.05	14	14.4	18	36
BZX79C22	20.8	23.3	5	55	0.05	15.4	16.4	20	34
BZX79C24	22.8	25.6	5	70	0.05	16.8	18.4	22	33

Device	Zener Voltage（Note 1）			Z_{Z}＠ $\mathrm{I}_{\mathrm{Z}} \quad(\Omega)$	Leakage Current		$\mathrm{T}_{\mathrm{C}}\left(\mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$		C（pF）
	Min．	Max．	$\mathrm{I}_{\mathrm{Z}}(\mathrm{mA})$	Max．	$\mathrm{I}_{\mathrm{R}}(\mu \mathrm{A})$	$\mathrm{V}_{\mathrm{R}}(\mathrm{V})$	Min．	Max．	$\mathrm{V}_{\mathrm{Z}}=0, \mathrm{f}=1 \mathrm{MHz}$
BZX79C27	25.1	28.9	2	80	0.05	18.9	－	23.5	30
BZX79C30	28	32	2	80	0.05	21	－	26	27
BZX79C33	31	35	2	80	0.05	23.1	－	29	25
BZX79C36	34	38	2	90	0.05	25.2	－	31	23
BZX79C39	37	41	2	130	0.05	27.3	－	34	21
BZX79C43	40	46	2	150	0.05	30.1	－	37	21
BZX79C47	44	50	2	170	0.05	32.9	－	40	19
BZX79C51	48	54	2	180	0.5	35.7	－	44	19
BZX79C56	52	60	2	200	0.05	39.2	－	47	18
V_{F} Forward	e $=1$	Max＠	100 mA						

Notes：
1．Zener Voltage $\left(\mathrm{V}_{\mathrm{Z}}\right)$
The zener voltage is measured with the device junction in the thermal equilibrium at the lead temperature $\left(T_{L}\right)$ at $30^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$ and $3 / 8^{\text {＂lead length．}}$

Top Mark Information

Device	Line 1	Line 2	Line 3
BZX79C2V4	LOGO	9C	2V4
BZX79C2V7	LOGO	9 C	2V7
BZX79C3V0	LOGO	9 C	3V0
BZX79C3V3	LOGO	9C	3V3
BZX79C3V6	LOGO	9 C	3V6
BZX79C3V9	LOGO	9 C	3V9
BZX79C4V3	LOGO	9 C	4V3
BZX79C4V7	LOGO	9C	4V7
BZX79C5V1	LOGO	9 C	5V1
BZX79C5V6	LOGO	9C	5V6
BZX79C6V2	LOGO	9 C	6V2
BZX79C6V8	LOGO	9 C	6V8
BZX79C7V5	LOGO	9 C	7V5
BZX79C8V2	LOGO	9 C	8V2
BZX79C9V1	LOGO	9 C	9V1
BZX79C10	LOGO	9 C	10
BZX79C11	LOGO	9 C	11
BZX79C12	LOGO	9 C	12
BZX79C13	LOGO	9 C	13
BZX79C15	LOGO	9C	15
BZX79C16	LOGO	9 C	16
BZX79C18	LOGO	9 C	18
BZX79C20	LOGO	9 C	20
BZX79C22	LOGO	9 C	22
BZX79C24	LOGO	9 C	24
BZX79C27	LOGO	9C	27
BZX79C30	LOGO	9 C	30
BZX79C33	LOGO	9 C	33
BZX79C36	LOGO	9 C	36
BZX79C39	LOGO	9C	39
BZX79C43	LOGO	9C	43
BZX79C47	LOGO	9 C	47
BZX79C51	LOGO	9 C	51
BZX79C56	LOGO	9 C	56

Top Mark Information (Continued)

[^0]
General Requirements:

1.0 Cathode Band
2.0 First Line: F - Fairchild Logo
3.0 Second Line: Device name - For $1 N x x$ series: $4^{\text {th }}$ to $5^{\text {th }}$ characters of the device name.

For BZxx series: $5^{\text {th }}$ to $6^{\text {th }}$ characters of the device name.
4.0 Third Line: Device name - For $1 N x x$ series: $6^{\text {th }}$ to $7^{\text {th }}$ characters of the device name.

For BZXyy series: Voltage rating
5.0 Devices shall be marked as required in the device specification (PID or FSC Test Spec).
6.0 Maximum no. of marking lines: 3
7.0 Maximum no. of digits per line: 2
8.0 FSC logo must be 20% taller than the alphanumeric marking and should occupy the 2 characters of the specified line.
9.0 Marking Font: Arial (Except FSC Logo)
10.0 First character of each marking line must be aligned vertically.
11.0 All device markings must be based on Fairchild device specification.

ON Semiconductor and 11 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor and UN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns tne rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
urope, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your loca Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Zener Diodes category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MMSZ5245BS-7-F RKZ13B2KG\#P1 RKZ5.6B2KJ\#R1 EDZTE6113B EDZTE6116B EDZTE616.8B 1N747A 1N966B NTE5116A NTE5121A NTE5139A NTE5147A NTE5152A NTE5155A NTE5156A NTE5164A JANS1N4974US SMAJ4764A-TP RKZ5.1BKU\#P6 3SMAJ5946B-TP 3SMAJ5950B-TP 3SMBJ5920B-TP 3SMBJ5925B-TP TDZTR24 441774C MMSZ4678-TP MMSZ5232BQ-13-F BZG04-36 BZG05C9V1-HE3-TR HZM30NBTR-E UDZTE-175.1B 3SMAJ5945B-TP 3SMAJ5947B-TP 3SMBJ5941B-TP DL4746A-TP RKZ18B2KK\#R1 RKZ10B2KL\#R1 RKZ6.8B2KL\#R1 RKZ8.2B2KL\#R1 DZ2S240M0L SMAZ27-TP SMBZ5920B-E3/52 ZMM3.0 RD16UM-T1-A RD39S-T1-A RD9.1S-T1-A RD10S-T1-A RD20S-T1-A RD2.2S-T1-A RD2.7UM-T1-A

[^0]: $1^{\text {st }}$ line: F - Fairchild Logo
 $2^{\text {nd }}$ line: Device Name $-4^{\text {th }}$ to $5^{\text {th }}$ characters of the device name or $5^{\text {th }}$ to $6^{\text {th }}$ characters for BZXyy series
 $3^{\text {rd }}$ line: Device Name $-6^{\text {th }}$ to $7^{\text {th }}$ characters of the device name. or Voltage rating for BZXyy series

