

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
BZX84C3V3 - BZX84C33

Zeners

Tolerance: $\mathrm{C}=5 \%$

Absolute Maximum Ratings ${ }^{(1),(2)}$

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Value	Unit
$\mathrm{I}_{\mathrm{FRM}}$	Repetitive Peak Forward Current	250	mA
$\mathrm{I}_{\mathrm{ZRM}}$	Repetitive Peak Working Current	250	mA
P_{D}	Power Dissipation	Referencing $\mathrm{R}_{\theta \mathrm{JA}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	250
	Referencing $\psi_{\mathrm{JL}}, \mathrm{T}_{\mathrm{L}}=25^{\circ} \mathrm{C}$	550	mW
$\mathrm{R}_{\theta \mathrm{JA}}$	Junction-to-Ambient Thermal Resistance ${ }^{(3)}$	465	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Ψ_{JL}	Junction-to-Lead Thermal Characteristics (with reference to Cathode)	220	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Storage Temperature Range	-55 to +150	${ }^{\circ}{ }^{\circ} \mathrm{C}$
T_{J}	Operating Junction Temperature	-55 to +150	${ }^{\circ} \mathrm{C}$

Notes:

1. These ratings are based on a maximum junction temperature of $150^{\circ} \mathrm{C}$.
2. These are steady-state limits. Fairchild Semiconductor should be consulted on applications involving pulsed or low-duty-cycle operations.
3. Device mounted on FR-4 PCB, board size $=76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm}$

Electrical Characteristics

Values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Device	Mark	$\mathrm{I}_{\mathrm{Z}}=5.0 \mathrm{~mA}$			$\mathrm{I}_{\mathrm{Z}}=1.0 \mathrm{~mA}$			$\mathrm{I}_{\mathrm{z}}=20 \mathrm{~mA}$		
		V_{Z} (V)		$\mathrm{Z}_{\mathrm{Z}}(\Omega)$	V_{Z} (V)		$\mathrm{Z}_{\mathrm{Z}}(\Omega)$	V_{Z} (V)		$\mathrm{Z}_{\mathrm{Z}}(\Omega)$
		Min.	Max.		Min.	Max.		Min.	Max.	
BZX84C3V3	Z14	3.1	3.5	95	2.3	2.9	600	3.6	4.2	40
BZX84C3V6	Z15	3.4	3.8	90	2.7	3.3	600	3.9	4.5	40
BZX84C3V9	Z16	3.7	4.1	90	2.9	3.5	600	4.1	4.7	30
BZX84C4V3	Z17	4.0	4.6	90	3.3	4.0	600	4.4	5.1	30
BZX84C4V7	Z1	4.4	5.0	80	3.7	4.7	500	4.5	5.4	15
BZX84C5V1	Z2	4.8	5.4	60	4.2	5.3	480	5.0	5.9	15
BZX84C5V6	Z3	5.2	6.0	40	4.8	6.0	400	5.2	6.3	10
BZX84C6V2	Z4	5.8	6.6	10	5.6	6.6	150	5.8	6.8	6
BZX84C6V8	Z5	6.4	7.2	15	6.3	7.2	80	6.4	7.4	6
BZX84C7V5	Z6	7.0	7.9	15	6.9	7.9	80	7.0	8.0	6
BZX84C8V2	Z7	7.7	8.7	15	7.6	8.7	80	7.7	8.8	6
BZX84C9V1	Z8	8.5	9.6	15	8.4	9.6	100	8.5	9.7	8
BZX84C10	Z9	9.4	10.6	20	9.3	10.6	150	9.4	10.7	10
BZX84C11	Y1	10.4	11.6	20	10.2	11.6	150	10.4	11.8	10
BZX84C12	Y2	11.4	12.7	25	11.2	12.7	150	11.4	12.9	10
BZX84C13	Y3	12.4	14.1	30	12.3	14.0	170	12.5	14.2	15
BZX84C15	Y4	13.8	15.6	30	13.7	15.5	200	13.9	15.7	20
BZX84C16	Y5	15.3	17.1	40	15.2	17.0	200	15.4	17.2	20
BZX84C18	Y6	16.8	19.1	45	16.7	19.0	225	16.9	19.2	20
BZX84C20	Y7	18.8	21.2	55	18.7	21.1	225	18.9	21.4	20
BZX84C22	Y8	20.8	23.3	55	20.7	23.2	250	20.9	23.4	25
BZX84C24	Y9	22.8	25.6	70	22.7	25.5	250	22.9	25.7	25
BZX84C27	Y10	25.1	28.9	80	25.0	28.9	300	25.2	29.3	45
BZX84C30	Y11	28.0	32.0	80	27.8	32.0	300	28.1	32.4	50
BZX84C33	Y12	31.0	35.0	80	30.8	35.0	325	31.1	35.4	55

V_{F} Forward Voltage $=0.9 \mathrm{~V}$ Maximum at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ for all $\mathrm{BZX84}$ series

Electrical Characteristics (Continued)
Values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Device	$\mathrm{V}_{\mathrm{R}}(\mathrm{V})$	$\mathrm{I}_{\mathrm{R}}(\mu \mathrm{A})$	Cap ${ }^{(4)}$ (pF)	$\mathrm{D}_{\mathrm{Vz}} / \mathrm{D}_{\mathrm{t}}$ at 5.0 mA (mV/k)	
				Min.	Max.
BZX84C3V3	1.0	5.0	450	-3.5	0.0
BZX84C3V6	1.0	5.0	450	-3.5	0.0
BZX84C3V9	1.0	5.0	450	-3.5	0.0
BZX84C4V3	1.0	5.0	450	-3.5	0.0
BZX84C4V7	2.0	3	260	-3.5	0.2
BZX84C5V1	2.0	2	225	-2.7	1.2
BZX84C5V6	2.0	1	200	-2.0	2.5
BZX84C6V2	4.0	3	185	0.4	3.7
BZX84C6V8	4.0	2	155	1.2	4.5
BZX84C7V5	5.0	1	140	2.5	5.3
BZX84C8V2	5.0	0.7	135	3.2	6.2
BZX84C9V1	6.0	0.5	130	3.8	7.0
BZX84C10	7.0	0.2	130	4.5	8.0
BZX84C11	8.0	0.1	130	5.4	9.0
BZX84C12	8.0	0.1	130	6.0	10
BZX84C13	8.0	0.1	120	7.0	11
BZX84C15	10.5	0.05	110	9.2	13
BZX84C16	11.2	0.05	105	10.4	14
BZX84C18	12.6	0.05	100	12.4	16
BZX84C20	14	0.05	85	14.4	18
BZX84C22	15.4	0.05	85	16.4	20
BZX84C24	16.8	0.05	80	18.4	22
BZX84C27	18.9	0.05	70	21.4	25.3
BZX84C30	21	0.05	70	24.4	29.4
BZX84C33	23.1	0.05	70	27.4	33.4

Note:
4. Capacitance at $\mathrm{V}_{\mathrm{R}}=0.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$.

Typical Performance Characteristics

Figure 1. Zener Current vs. Zener Voltage

Figure 3. 3.3 V Zener Voltage vs. Temperature

Figure 5. 12 V Zener Voltage vs. Zener Temperature

Figure 2. Zener Current vs. Zener Impedance

Figure 4. 5.1 V Zener Voltage vs. Temperature

Figure 6. 33 V Zener Voltage vs. Zener Temperature

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Zener Diodes category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
RKZ13B2KG\#P1 DL5234B 1N4682 1N4691 1N4693 1N4732A 1N4733A-TR 1N4736A 1N4750A 1N4759ARL 1N5241B 1N5365B
1N5369B 1 N747A 1N959B 1N964B 1N966B 1N972B NTE149A NTE5116A NTE5121A NTE5147A NTE5152A NTE5155A
NTE5164A JANS1N4974US 1N4692 1N4700 1N4702 1N4704 1N4711 1N4714 1N4737A 1N4745ARL 1N4752A 1N4752ARL
1N4760ARL 1N5221B 1N5236B 1N5241BTR 1N5242BTR 1N5350B 1N5352B 1N961BRR1 1N964BRL RKZ5.1BKU\#P6
3SMAJ5950B-TP 3SMBJ5925B-TP TDZTR24 441774C

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

