CAT3637

6-Channel Programmable High Efficiency LED Driver

Description

The CAT3637 is a high efficiency fractional charge pump that can drive up to six LEDs programmable by a 1 -wire digital interface. The inclusion of a 1.33x fractional charge pump mode increases device efficiency by up to 10% over traditional 1.5 x charge pumps with no added external capacitors.

Low noise input ripple is achieved by operating at a constant switching frequency which allows the use of small external ceramic capacitors. The multi-fractional charge pump supports a wide range of input voltages from 2.5 V to 5.5 V .

The EN/SET logic input functions as a chip enable and a digital programming interface for setting the current in the LED channels. The 1 -wire pulse-programming interface supports 15 linear steps from zero current to 30 mA full-brightness in 2 mA steps.

The device is available in a tiny $16-$ pad TQFN $3 \times 3 \mathrm{~mm}$ package with a maximum height of 0.8 mm .

ON Semiconductor's 1.33 x , charge pump switching architecture is patented.

Features

- High Efficiency 1.33x Charge Pump
- Charge Pump: 1x, 1.33x, 1.5x, 2x
- Drives 6 LEDs Between 30 mA and 0 mA Each
- 1-wire EZDim ${ }^{\text {TM }}$ Interface with 2 mA Step
- Power Efficiency up to 92%
- Low Noise Input Ripple in All Modes
- "Zero" Current Shutdown Mode
- Soft Start and Current Limiting
- Short Circuit Protection
- Thermal Shutdown Protection
- Tiny $3 \mathrm{~mm} \times 3 \mathrm{~mm}, 16$-pad TQFN Package
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- LCD Display Backlight
- Cellular Phones
- Digital Still Cameras
- Handheld Devices

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

TQFN-16 HV3 SUFFIX CASE 510AD

MARKING DIAGRAM

JAAM
AXXX
YWW

JAAM = CAT3637HV3-GT2
A = Assembly Location
XXX = Last Three Digits of Assembly Lot Number $\mathrm{Y}=$ Production Year (Last Digit)
WW = Production Week (Two Digits)

ORDERING INFORMATION

Device	Package	Shipping †
CAT3637HV3-GT2 (Note 1)	TQFN-16 (Pb-Free)	$2000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

1. NiPdAu Plated Finish (RoHS-compliant).

Figure 1. Typical Application Circuit

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Unit
VIN, LEDx, C1 \pm, C2 \pm voltage	6	V
VOUT Voltage	7	
EN/SET Voltage	$\mathrm{VIN}+0.7 \mathrm{~V}$	V
Storage Temperature Range	-65 to +160	$\mathrm{~V}^{\circ} \mathrm{C}$
Junction Temperature Range (Note 2)	-40 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature	300	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 2. RECOMMENDED OPERATING CONDITIONS

Parameter	Range	Unit
VIN	2.5 to 5.5	V
Ambient Temperature Range (Note 2)	-40 to +85	${ }^{\circ} \mathrm{C}$
ILED per LED pin	0 to 30	mA
Total Output Current	0 to 180	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
2. Package thermal resistance is below $50^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on FR4 board.

Table 3. ELECTRICAL OPERATING CHARACTERISTICS
(over recommended operating conditions unless specified otherwise) $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$, $\mathrm{EN}=\mathrm{High}, \mathrm{T}_{\text {AMB }}=25^{\circ} \mathrm{C}$

Symbol	Name	Conditions	Min	Typ	Max	Units
I_{Q}	Quiescent Current	$\begin{aligned} & 1 \times \text { mode, } \mathrm{V}_{\mathrm{IN}}=4.2 \mathrm{~V} \\ & 1.33 \mathrm{x} \text { mode, } \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V} \\ & 1.5 \mathrm{x} \text { mode, } \mathrm{V}_{\mathrm{IN}}=2.8 \mathrm{~V} \\ & 2 \mathrm{mode}, \mathrm{~V}_{\mathrm{IN}}=2.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 2.8 \\ & 3.7 \\ & 3.8 \end{aligned}$		mA
IQSHDN	Shutdown Current	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
ILED-ACC	LED Current Accuracy	$2 \mathrm{~mA} \leq \mathrm{I}_{\text {LED }} \leq 30 \mathrm{~mA}$		± 3		\%
ILED-dEV	LED Channel Matching	$\frac{I_{\text {LED }}-I_{\text {LEDAVG }}}{I_{\text {LEDAVG }}}$		± 1		\%
R OUT	Output Resistance (open loop)	1 x mode, IOUT $=120 \mathrm{~mA}$ 1.33 x mode, lout $=120 \mathrm{~mA}$ $1.5 x$ mode, $\mathrm{l}_{\text {OUT }}=120 \mathrm{~mA}$ $2 \times$ mode, IOUT $=120 \mathrm{~mA}$		$\begin{gathered} 0.5 \\ 3.5 \\ 3.5 \\ 6 \end{gathered}$		Ω
Fosc	Charge Pump Frequency	1.33x and $2 x$ mode $1.5 x$ mode	$\begin{aligned} & 0.6 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.4 \end{aligned}$	MHz
ISC_MAX	Output short circuit Current Limit	$\mathrm{V}_{\text {OUT }}<0.5 \mathrm{~V}$		80		mA
LED ${ }_{\text {TH }}$	1 x to 1.33 x or 1.33 x to 1.5 x or $1.5 x$ to $2 x$ Transition Thresholds at any LEDx pin			150		mV
$\mathrm{V}_{\mathrm{HYS}}$	1.33x to 1x Transition Hysteresis	$\mathrm{V}_{\text {IN }}$ - Highest LED V_{F}		400		mV
T_{DF}	Mode Transition Filter Delay			120		us
In_max	Input Current Limit	$\mathrm{V}_{\text {OUT }}>1 \mathrm{~V}$		450		mA
$\begin{gathered} \mathrm{R}_{\mathrm{EN} / \mathrm{DIM}} \\ \mathrm{~V}_{\mathrm{HII}} \\ \mathrm{~V}_{\mathrm{LO}} \end{gathered}$	EN/DIM Pin - Internal Pull-down Resistor - Logic High Level - Logic Low Level		1.3	100	0.4	$\begin{gathered} \mathrm{k} \Omega \\ \mathrm{~V} \\ \mathrm{~V} \end{gathered}$
$\mathrm{T}_{\text {SD }}$	Thermal Shutdown			150		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{HYS}}$	Thermal Hysteresis			20		${ }^{\circ} \mathrm{C}$
V UVLO	Undervoltage lockout (UVLO) threshold			2		V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
NOTE: Typical application circuit with external components is shown on page 2.

CAT3637

Table 4. RECOMMENDED EN/SET TIMING (For $2.5 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$, over full ambient temperature range -40° to $+85^{\circ} \mathrm{C}$.)

Symbol	Name	Conditions	Min	Typ	Max	Units
TLO	EN/SET program low time		0.2		100	$\mu \mathrm{s}$
T_{HI}	EN/SET program high time		0.2			$\mu \mathrm{s}$
TOFF	EN/SET low time to shutdown		1.5			ms
T_{D}	LED current settling time			10		μs

Figure 2. EN/SET One Wire Addressable Timing Diagram

TYPICAL PERFORMANCE CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}\right.$, $\mathrm{I}_{\text {OUT }}=120 \mathrm{~mA}$ (6 LEDs at 20 mA), $\mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{\mathrm{OUT}}=\mathrm{C}_{1}=\mathrm{C}_{2}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{AMB}}=25^{\circ} \mathrm{C}$ unless otherwise specified.)

Figure 3. Efficiency vs. Input Voltage

Figure 5. LED Current Change vs. Input Voltage

Figure 4. Efficiency vs. Li-lon Voltage

Figure 6. LED Current Change vs. Temperature

Figure 7. Quiescent Current vs. Input Voltage

TYPICAL PERFORMANCE CHARACTERISTICS
$\left(\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}\right.$, I $\mathrm{I}_{\text {OUT }}=120 \mathrm{~mA}$ (6 LEDs at 20 mA), $\mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {OUT }}=\mathrm{C}_{1}=\mathrm{C}_{2}=1 \mu \mathrm{~F}, \mathrm{~T}_{\text {AMB }}=25^{\circ} \mathrm{C}$ unless otherwise specified.)

Figure 8. Switching Frequency vs. Temperature

Figure 10. Power Up in 1x Mode

Figure 12. Power Up in 1.5x Mode

Figure 9. Output Resistance vs. Input Voltage

Figure 11. Power Up in 1.33x Mode

Figure 13. Power Up in 2x Mode

TYPICAL PERFORMANCE CHARACTERISTICS
$\left(\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=120 \mathrm{~mA}(6 \mathrm{LEDs}\right.$ at 20 mA$), \mathrm{C}_{\text {IN }}=\mathrm{C}_{\mathrm{OUT}}=\mathrm{C}_{1}=\mathrm{C}_{2}=1 \mu \mathrm{~F}, \mathrm{~T}_{\text {AMB }}=25^{\circ} \mathrm{C}$ unless otherwise specified. $)$

Figure 14. Power Up Delay (1x Mode)

Figure 15. Power Down Delay (1x Mode)

Figure 17. Switching Waveforms in 1.33x Mode

Figure 18. Switching Waveforms in 1.5x Mode

Figure 19. Switching Waveforms in 2x Mode

CAT3637

TYPICAL PERFORMANCE CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}\right.$, I $\mathrm{I}_{\text {OUT }}=120 \mathrm{~mA}$ (6 LEDs at 20 mA), $\mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{\mathrm{OUT}}=\mathrm{C}_{1}=\mathrm{C}_{2}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{AMB}}=25^{\circ} \mathrm{C}$ unless otherwise specified.)

Figure 20. Foldback Current Limit

Figure 21. LED Brightness Levels

Figure 22. LED Settling Time

Table 5. PIN DESCRIPTION

Pin \#	Name	
1	LED6	LED6 cathode terminal
2	LED5	LED5 cathode terminal
3	LED4	LED4 cathode terminal
4	LED3	LED3 cathode terminal
5	LED2	LED2 cathode terminal
6	LED1	LED1 cathode terminal
7	VOUT	Charge pump output, connect to LED anodes
8	C1N	Charge pump input, connect to battery or supply
10	C1-	Bucket capacitor 1, positive terminal
11	C2+	Bucket capacitor 1, negative terminal
12	C2-	Bucket capacitor 2, negative terminal
$13 / 14$	GND	No connect
15	EN/SET	Device enable (active high) and 1 wire control input
16	TAB	Connect to GND on the PCB
TAB		

Pin Function

VIN is the supply pin for the charge pump. A small $1 \mu \mathrm{~F}$ ceramic bypass capacitor is required between the VIN pin and ground near the device. The operating input voltage range is from 2.5 V to 5.5 V . Whenever the input supply falls below the under-voltage threshold (2 V) all the LED channels will be automatically disabled and the device register are reset to default values.
EN/SET is the enable and one wire addressable control logic input for all LED channels. Guaranteed levels of logic high and logic low are set at 1.3 V and 0.4 V respectively. When EN/SET is initially taken high, the device becomes enabled and all LED currents remain at 0 mA . To place the device into zero current mode, the EN/SET pin must be held low for more than 1.5 ms .
VOUT is the charge pump output that is connected to the LED anodes. A small $1 \mu \mathrm{~F}$ ceramic bypass capacitor is required between the VOUT pin and ground near the device.

GND is the ground reference for the charge pump. The pin must be connected to the ground plane on the PCB.
$\mathbf{C 1 + , C 1 -}$ are connected to each side of the ceramic bucket capacitor C 1 .
C2+, C2- are connected to each side of the ceramic bucket capacitor C 2 .
LED1 to LED6 provide the internal regulated current for each of the LED cathodes. These pins enter high-impedance zero current state whenever the device is placed in shutdown mode.
TAB is the exposed pad underneath the package. For best thermal performance, the tab should be soldered to the PCB and connected to the ground plane.

Simplified Block Diagram

Figure 23. CAT3637 Functional Block Diagram

Basic Operation

At power-up, the CAT3637 starts operating in 1x mode where the output will be approximately equal to the input supply voltage (less any internal voltage losses). If the output voltage is sufficient to regulate all LED currents, the device remains in 1 x operating mode.

If the output voltage is insufficient or falls to a level where the regulated current cannot be maintained, the device automatically switches into 1.33 x mode (after a fixed delay time of about $120 \mu \mathrm{~s}$). In 1.33 x mode, the output voltage is approximately equal to 1.33 times the input supply voltage (less any internal voltage losses).

If the output voltage is still insufficient or falls to a level where the regulated currents cannot be maintained, the
device will automatically switch to the $1.5 x$ mode (after a fixed delay time of about $400 \mu \mathrm{~s}$). In 1.5 x mode, the output is approximately equal to 1.5 times the input supply voltage (less any internal voltage losses).

If the output voltage is still insufficient to drive the LEDs, it will automatically switch into 2 x mode where the output is approximately equal to 2 times the input supply voltage (less any internal voltage losses).

If the device detects a sufficient output voltage to drive all LED currents in 1 x mode, it will revert back to 1 x mode. This only applies for changing back to the 1 x mode.

LED Current Setting

The current in each of the six LED channels is programmed through the 1-wire EN/SET digital control input. At the initial power-up and once the EN/SET is set high, the LED current remains at zero in all channels. On the first EN/SET pulse (positive edge), the current is set to 2 mA in all channels. On each consecutive pulse, the current is incremented by 2 mA . On the $15^{\text {th }}$ pulse, the current is equal to the full scale of 30 mA . On the following pulse ($16^{\text {th }}$ pulse), the current goes back to zero and the previous
sequence can be repeated. The EN/SET pin can be pulsed at high frequency 15 times to decrement the current by 2 mA or to program the current from 0 mA to 30 mA . The maximum EN/SET signal frequency for programming the LED current is 2.5 MHz .

To power-down the device and turn-off all current sources, the EN/SET input should be kept low for a duration $\mathrm{T}_{\mathrm{OFF}}$ of 1.5 ms or more. The driver typically powers-down with a delay of about 1 ms .

Figure 24. EN/SET One Wire Addressable Timing Diagram

Figure 25. EN/SET Program Increasing / Decreasing LED Current by 2 mA

Unused LED Channels

For applications with 5 LEDs or less, unused LEDs can be disabled by connecting the LED pin directly to VOUT, as shown on Figure 26. If LED pin voltage is within 1 V of

VOUT, then the channel is switched off and a $200 \mu \mathrm{~A}$ test current is placed in the channel to sense when the channel moves below VOUT - 1 V .

Figure 26. Five LED Application

Protection Mode

If an LED is disconnected, the output voltage VOUT automatically limits at about 5.5 V . This is to prevent the output pin from exceeding its absolute maximum rating.

If the die temperature exceeds $+150^{\circ} \mathrm{C}$ the driver will enter a thermal protection shutdown mode. When the device temperature drops by about $20^{\circ} \mathrm{C}$ the device will resume normal operation.

LED Selection

LEDs with forward voltages $\left(\mathrm{V}_{\mathrm{F}}\right)$ ranging from 1.3 V to 5.0 V may be used with the CAT3637. Selecting LEDs with lower V_{F} is recommended in order to improve the efficiency by keeping the driver in 1 x mode longer as the battery voltage decreases.

For example, if a white LED with a V_{F} of 3.3 V is selected over one with V_{F} of 3.5 V , the CAT3637 will stay in 1 x mode for lower supply voltage of 0.2 V . This helps improve the efficiency and extends battery life.

External Components

The driver requires two external $1 \mu \mathrm{~F}$ ceramic capacitors for decoupling input, output, and for the charge pump. Both capacitors type X5R and X7R are recommended for the LED driver application. In all charge pump modes, the input current ripple is kept very low by design and an input bypass capacitor of $1 \mu \mathrm{~F}$ is sufficient.

In 1 x mode, the device operates in linear mode and does not introduce switching noise back onto the supply.

Recommended Layout

In charge pump mode, the driver switches internally at a high frequency. It is recommended to minimize trace length to all four capacitors. A ground plane should cover the area under the driver IC as well as the bypass capacitors. Short connection to ground on capacitors $\mathrm{C}_{\text {IN }}$ and COUT can be implemented with the use of multiple via. A copper area matching the TQFN exposed pad (TAB) must be connected to the ground plane underneath. The use of multiple via improves the package heat dissipation.

Figure 27. Recommended Layout

TQFN16, 3x3
CASE 510AD-01
ISSUE A
DATE 19 MAR 2008

TOP VIEW

SIDE VIEW

BOTTOM VIEW

SYMBOL	MIN	NOM	MAX
A	0.70	0.75	0.80
A1	0.00	0.02	0.05
A3	0.20 REF		
b	0.18	0.25	0.30
D	2.90	3.00	3.10
D2	1.40	---	1.80
E	2.90	3.00	3.10
E2	1.40	---	1.80
e	0.50 BSC		
L	0.30	0.40	0.50

FRONT VIEW

Notes:

(1) All dimensions are in millimeters.
(2) Complies with JEDEC MO-220.

| DOCUMENT NUMBER: | 98AON34373E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TQFN16, 3X3 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
EVAL6482H-DISC EVAL-AD5522EBUZ EVAL-ADM1060EBZ EVAL-ADM1073MEBZ EVAL-ADM1166TQEBZ EVALADM1168LQEBZ EVAL-ADM1171EBZ EVAL-ADM1276EBZ EVB-EN5319QI EVB-EN5365QI EVB-EN6347QI EVB-EP5348UI MIC23158YML EV MIC23451-AAAYFL EV MIC5281YMME EV 124352-HMC860LP3E ADM00513 ADM8611-EVALZ ADM8612EVALZ ADM8613-EVALZ ADP1046ADC1-EVALZ ADP1055-EVALZ ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP160UJZ-REDYKIT ADP166UJ-EVALZ ADP1712-3.3-EVALZ ADP1714-3.3-EVALZ ADP1715-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1754-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-EVALZ ADP1876-EVALZ ADP1879-1.0-EVALZ ADP1882-1.0-EVALZ ADP1883-0.6-EVALZ ADP197CB-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.2-EVALZ ADP2102-1.875EVALZ

