CAT5136, CAT5137, CAT5138

Digital Potentiometers (POTs) with 128 Taps and I^{2} C Interface

Description

CAT5136, CAT5137, and CAT5138 are a family of digital POTs operating like mechanical potentiometers in various configurations. The tap points between the 127 equal resistive elements are connected to the wiper output via CMOS switches. The switches are controlled by a 7 -bit Wiper Control Register (WCR) via the $\mathrm{I}^{2} \mathrm{C}$ serial bus. CAT5136 is configured as a variable resistor. CAT5137 and CAT5138 are resistive voltage dividers, with one terminal of the potentiometer connected to GND. CAT5137 and CAT5138 have different device IDs, which makes it possible to use both on the same $\mathrm{I}^{2} \mathrm{C}$ bus. Upon power-up, the WCR is set to mid-scale (1000000).

Features

- Single Linear Digital Potentiometer with 128 Taps
- End-to-End Resistance of $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$
- $I^{2} \mathrm{C}$ Interface
- Wiper goes to Midscale at Power-up
- Digital Supply Range (V_{DD}): 2.7 V to 5.5 V
- Low Standby Current
- Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 6-pin SC-70 Package
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- LCD Screen Adjustment
- Volume Control
- Mechanical Potentiometer Replacement
- Gain Adjustment
- Line Impedance Matching
- VCOM Setting Adjustments

PIN CONNECTIONS
(for low pin count devices)

See detailed pin function descriptions on page 2.

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

Figure 1. Block Diagram

Table 1. PIN FUNCTION DESCRIPTION

Pin No.		Pin Name	
CAT5136	CAT5137/CAT5138		
1	1	VDD	Digital Supply Voltage (2.7 V to 5.5 V)
2	3	GND	Ground
3	4	SDA	Serial Bus Clock input for the $\mathrm{I}^{2} \mathrm{C}$ Serial Bus. This clock is used to clock all data transfers into and out of the CAT5136-8
4	5	Serial Data Input/Output - Bidirectional Serial Data pin used to transfer data into and out of the CAT5136-8. This is an Open-Drain I/O and can be wire OR'd with other Open-Drain (or Open Collector) I/Os.	
5	-	RW	Wiper Terminal for the potentiometer
6	6	RL	Low Reference Terminal for the potentiometer
-		High Reference Terminal for the potentiometer	

Table 2. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Range	Unit
Temperature Under Bias		-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to 150	
Voltage on any SDA, SCL, AO \& A1 pins with respect to Ground (Note 1)		${ }^{\circ} \mathrm{C}$	
Voltage on RH, RL \& RW pins with respect to Ground		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	
$\mathrm{~V}_{\text {DD }}$ with respect to Ground		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	
Wiper Current (10 sec)		-0.3 to +6	V
Lead Soldering temperature (10 sec)		V	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Latch-up protection is provided for stresses up to 100 mA on address and data pins from -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$.

Table 3. RECOMMENDED OPERATION CONDITIONS

Parameter	Symbol	Value	Unit
Digital Supply Voltage	V_{DD}	+2.7 to +5.5	V
Operating Temperature Range		-40 to +85	${ }^{\circ} \mathrm{C}$

Table 4. POTENTIOMETERS CHARACTERISTICS (Over recommended operating conditions unless otherwise stated.)

Parameter	Symbol	Test Conditions	Limits			Units
			Min	Typ	Max	
Potentiometer Resistance (10 k)	$\mathrm{R}_{\text {POT }}$			10		$\mathrm{k} \Omega$
Potentiometer Resistance (50 k)	R ${ }_{\text {POT }}$			50		$\mathrm{k} \Omega$
Potentiometer Resistance (100 k) $^{\text {a }}$	$\mathrm{R}_{\text {POT }}$			100		$\mathrm{k} \Omega$
Potentiometer Resistance Tolerance	$\mathrm{R}_{\text {TOL }}$				± 20	\%
Power Rating		$25^{\circ} \mathrm{C}$			50	mW
Wiper Current	IW				± 3	mA
Wiper Resistance	R_{W}	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$		85	200	Ω
Voltage on $\mathrm{R}_{\mathrm{W}}, \mathrm{R}_{\mathrm{H}}$ or R_{L}	$\mathrm{V}_{\text {TERM }}$	$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to +5.5 V	GND		V_{DD}	V
Resolution	RES			0.78		\%
Integral Non-Linearity (Note 3)	INL	$\mathrm{V}_{\mathrm{W}_{(\mathrm{n}) \text { (actual) }}}-\mathrm{V}_{\mathrm{W(n)(} \mathrm{expected)}}$ (Notes 6, 7)			± 1	$\begin{aligned} & \text { LSB } \\ & \text { (Note 5) } \end{aligned}$
Differential Non-Linearity (Note 4)	DNL	$\mathrm{V}_{\mathrm{W}(\mathrm{n}+1)}-\left[\mathrm{V}_{\mathrm{W}(\mathrm{n})}+\mathrm{LSB}\right]($ Notes 6, 7)			1	$\begin{aligned} & \text { LSB } \\ & \text { (Note 5) } \end{aligned}$
Resistor Integral Non-Linearity	$\mathrm{R}_{\text {INL }}$	R_{n} - n LLSB (Notes 6, 8)			± 2	$\begin{aligned} & \hline \text { LSB } \\ & \text { (Note 5) } \end{aligned}$
Resistor Differential Non-Linearity	$\mathrm{R}_{\mathrm{DNL}}$	$\mathrm{R}_{\mathrm{n}}-\left[\mathrm{R}_{\mathrm{n}-1}+\mathrm{LSB}\right]($ Notes 6, 8)			± 1	$\begin{gathered} \hline \text { LSB } \\ \text { (Note 5) } \end{gathered}$
Temperature Coefficient of RPOT	T ${ }_{\text {CRPOT }}$	(Note 2)		± 300		ppm/ ${ }^{\circ} \mathrm{C}$
Ratiometric Temperature Coefficient	$\mathrm{T}_{\text {CRatio }}$	(Note 2)			30	ppm/ ${ }^{\circ} \mathrm{C}$
Potentiometer Capacitances	$\mathrm{C}_{\mathrm{H}} / \mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\mathrm{W}}$	(Note 2)		10/10/25		pF
Frequency Response	fc	$\mathrm{R}_{\text {POT }}$		0.4		MHz

2. This parameter is tested initially and after a design or process change that affects the parameter.
3. Integral Non-Linearity is utilized to determine actual wiper voltage versus expected voltage as determined by wiper position when used as a potentiometer.
4. Differential Non-Linearity is utilized to determine the actual change in voltage between two successive tap positions when used as a potentiometer.
5. $L S B=\left(R_{H M}-R_{L M}\right) / 127$; where $R_{H M}$ and $R_{L M}$ are the highest and lowest measured values on the wiper terminal.
6. $n=1,2, \ldots, 127$
7. $V_{D D} @ R_{H} ; V_{W}$ measured @ R_{W} with no load.
8. $R w$ and R_{L} in the range of $0 V$ and $V_{D D}$.

Table 5. D.C. ELECTRICAL CHARACTERISTICS (Over recommended operating conditions unless otherwise stated.)

Parameter	Symbol	Test Conditions	Min	Max	Units
Power Supply Current (Write/Read)	I_{DD}	$\mathrm{F}_{\mathrm{SCL}}=400 \mathrm{kHz}, \mathrm{SDA}$ Open, $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$, Input $=\mathrm{GND}$		200	$\mu \mathrm{~A}$
Standby Current	$\mathrm{I}_{\mathrm{SB} \text { (VDD })}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{DD}}, \mathrm{SDA}=\mathrm{V}_{\mathrm{DD}}$		0.5	$\mu \mathrm{~A}$
Input Leakage Current	I_{LI}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ to V_{DD}	-1	1	$\mu \mathrm{~A}$
Output Leakage Current	I_{LO}	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{GND}$ to V_{DD}	-1	1	$\mu \mathrm{~A}$
Input Low Voltage	V_{IL}		-0.3	$\mathrm{~V}_{\mathrm{DD}} \times 0.3$	V
Input High Voltage	V_{IH}		$\mathrm{V}_{\mathrm{DD}} \times 0.7$	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
Output Low Voltage $\left(\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}\right)$	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$		0.4	V

Table 6. A.C. CHARACTERISTICS

Parameter (see Figure 6)	Symbol	Min	Typ	Max	Units
Clock Frequency	$\mathrm{F}_{\text {SCL }}$			400	kHz
Noise Suppression Time Constant at SCL \& SDA Inputs	T_{1} (Note 9)			50	ns
SCL Low to SDA Data Out and ACK Out	t_{AA}			1	us
Time the bus must be free before a new transmission can start	$\mathrm{t}_{\text {BUF }}$ (Note 9)	1.2			$\mu \mathrm{s}$
Start Condition Hold Time	$\mathrm{t}_{\text {HD: }}$ STA	0.6			$\mu \mathrm{s}$
Clock Low Period	tow	1.2			$\mu \mathrm{s}$
Clock High Period	thigh	0.6			$\mu \mathrm{s}$
Start Condition Setup Time (for a Repeated Start Condition)	${ }^{\text {t }}$ SU:STA	0.6			$\mu \mathrm{s}$
Data In Setup Time	${ }^{\text {t }}$ SU:DAT	100			ns
Data in Hold Time	$\mathrm{t}_{\mathrm{HD}: \text { DAT }}$	0			$\mu \mathrm{s}$
SDA and SCL Rise Time	t_{R} (Note 9)			0.3	$\mu \mathrm{s}$
SDA and SCL Fall Time	t_{F} (Note 9)			300	ns
Stop Conditions Setup Time	tsu:Sto	0.6			us
Data Out Hold Time	t_{DH}	100			ns

9. This parameter is tested initially and after a design or process change that affects the parameter.

Table 7. CAPACITANCE $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}\right)$

Parameter	Symbol	Test Conditions	Min	Typ	Max
Unit					
Input/Output Capacitance (SDA, SDC)	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	$\mathrm{V}_{\mathrm{l} / \mathrm{O}}=0 \mathrm{~V}$ (Note 10)			10

10. This parameter is tested initially and after a design or process change that affects the parameter.

Table 8. POWER-UP TIMING (Notes 11, 12)

Symbol	Parameter	Min	Max	Units
tpur	Power-up to Read Operation		1	ms
tpuw	Power-up to Write Operation		1	ms

11. This parameter is tested initially and after a design or process change that affects the parameter.
12. $t_{\text {PUR }}$ and $t_{\text {PUW }}$ are the delays required from the time $V_{D D}$ is stable until the specified operation can be initiated.

Table 9. WIPER TIMING

Symbol	Parameter	Min	Max	Units
$t_{\text {WRPO }}$	Wiper Response Time After Power Supply Stable	5	10	$\mu \mathrm{~s}$
$t_{\text {WRL }}$	Wiper Response Time After Instruction Issued	5	$\mu \mathrm{~s}$	

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 2. Resistance between R_{W} and R_{L}

Figure 4. Integral Non-Linearity

Figure 3. Power Supply Current

Figure 5. Differential Non-Linearity

Figure 6. Bus Timing

SERIAL BUS PROTOCOL

The following defines the features of the $\mathrm{I}^{2} \mathrm{C}$ bus protocol:

1. Data transfer may be initiated only when the bus is not busy.
2. During a data transfer, the data line must remain stable whenever the clock line is high. Any changes in the data line while the clock is high will be interpreted as a START or STOP condition.

The device controlling the transfer is a master, typically a processor or controller, and the device being controlled is the slave. The master will always initiate data transfers and provide the clock for both transmit and receive operations. Therefore, the CAT513x will be considered a slave device in all applications.

START Condition

The START Condition precedes all commands to the device, and is defined as a HIGH to LOW transition of SDA when SCL is HIGH. The CAT513x monitors the SDA and SCL lines and will not respond until this condition is met (see Figure 7).

STOP Condition

A LOW to HIGH transition of SDA when SCL is HIGH determines the STOP condition. All operations must end with a STOP condition (see Figure 7).

Acknowledge

After a successful data transfer, each receiving device is required to generate an acknowledge. The acknowledging device pulls down the SDA line during the ninth clock cycle, signaling that it received the 8 bits of data (see Figure 8).

The CAT513x responds with an acknowledge after receiving a START condition and its slave address. If the device has been selected along with a write operation, it responds with an acknowledge after receiving each 8 -bit byte.

When the CAT513x is in a READ mode it transmits 8 bits of data, releases the SDA line, and monitors the line for an acknowledge. Once it receives this acknowledge, the CAT513x will continue to transmit data. If no acknowledge is sent by the Master, the device terminates data transmission and waits for a STOP condition.

Figure 7. Start/Stop Condition

Figure 8. Acknowledge Condition

CAT5136, CAT5137, CAT5138

DEVICE DESCRIPTION

Slave Address Instruction Byte Description

The first byte sent to the CAT513x from the master processor is called the Slave Address Byte. The most significant seven bits of the slave address are a device type identifier. For CAT5136 and CAT5137 these bits are fixed at 0101110 . For CAT5138, they are 0111110 . This allows both CAT5137 and CAT5138, which are functionally identical, to reside on the same bus (refer to Table 10).

Only the device with slave address matching the input byte will be accessed by the master.

The last bit is the READ/WRITE bit and determines the function to be performed. If it is a " 1 " a read command is initiated and if it is a " 0 " a write is initiated.

After the Master sends a START condition and the slave address byte, the CAT513x monitors the bus and responds with an acknowledge when its address matches the transmitted slave address.

Table 10. BYTE 1 SLAVE ADDRESS AND INSTRUCTION BYTE

Device	Device Type Identifier							
	ID6	ID5	ID4	ID3	ID2	ID1	ID0	
CAT5136	0	1	0	1	1	1	0	R/W
CAT5137	0	1	0	1	1	1	0	R/W
CAT5138	0	1	1	1	1	1	0	R/W
(MSB)								

Wiper Control Register (WCR) Description

The CAT513x contains a 7-bit volatile Wiper Control Register which is decoded to select one of the 128 switches along its resistor array. The Wiper Control Register loses its contents when the CAT513x is powered-down. At power-up, the register is loaded with the midscale value 40 h . The contents of the WCR may be read or changed directly by the host using a READ/WRITE command on the $\mathrm{I}^{2} \mathrm{C}$ bus (see Table 1 to access WCR). Since the CAT513x will only make use of the 7 LSB bits, the first data bit, or MSB, is ignored on write instructions and will always come back as a " 0 " on read commands.

A write operation (see Table 11) requires a Start condition, followed by a valid slave address byte, a valid address byte 00h, a data byte and a STOP condition. After each of the three bytes, the CAT513x responds with an acknowledge. After the third byte, the data is written to the Wiper Control Register, and the wiper changes position accordingly.
A read operation (see Table 12) requires a Start condition, followed by a valid slave address byte for write, a valid address byte 00 h , a second START and a second slave address byte for read. After each of the three bytes, the CAT513x responds with an acknowledge and then the device transmits the data byte. The master terminates the read operation by issuing a STOP condition following the last bit of Data byte.

Table 11. WRITE OPERATION
CAT5136 and CAT5137

	1st byte								Y	2nd byte							$$	3rd byte								צ	-
	SLAVE ADDRESS							3		ADDRESS BYTE								DATA BYTE IN									
S	0	1	0	1	1	1	0	0	A	0	0	0	0	0	0	0	A	X	D6	D5	D4	D3	D2	D1	D0	A	P

CAT5138

	1st byte								$\begin{aligned} & \text { Y } \\ & \hline \text { U } \end{aligned}$	2nd byte						$\stackrel{Y}{U}$	3rd byte								Y	-
	SLAVE ADDRESS							\sum_{3}^{2}		ADDRESS BYTE							DATA BYTE IN									
S	0	1	1	1	1	0	0	0	A	0	0	0	0	0	0	A	X	D6	D5	D4	D3	D2	D1	D0	A	P

Table 12. READ OPERATION
CAT5136 and CAT5137

	1st byte									2nd byte						$\stackrel{y}{U}$	$\begin{gathered} \stackrel{\rightharpoonup}{c} \\ \stackrel{y}{c} \\ \underset{\infty}{2} \end{gathered}$	3rd byte								Y	4th byte								Y	$\stackrel{0}{\circ}$
尔	SLAVE ADDRESS							\sum_{3}^{0}	$$	ADDRESS BYTE								SLAVE ADDRESS							R		OUTPUT DATA BYTE									
S	0	1	0	1	1	1	0	0	A	0	0	0	0	0	0	A	S	0	1	0	1	1	1	0	1	A	0	D6	D5	D4	D3	D2	D1	D0	NA	P

CAT5138

	1st byte								2nd byte						$$	$\begin{gathered} \stackrel{\leftarrow}{\infty} \\ \stackrel{\leftrightarrow}{\kappa} \end{gathered}$	3 rd byte								Y	4th byte								Y	$\stackrel{0}{\text { O }}$
$\stackrel{\mathfrak{r}}{\mathfrak{6}}$	SLAVE ADDRESS						3		ADDRESS BYTE								SLAVE ADDRESS							R		OUTPUT DATA BYTE									
S	0		1	1	1	0	0	A	0	00	0	0	0	0	A	S	0	1	1	1	1	1	0	1	A	0	D6	D5	D4	D3	D2	D1	D0	NA	P

POTENTIOMETER OPERATION

CAT5136, CAT5137, CAT5138 are a family of a 128 -position, digital controlled potentiometers. When $V_{D D}$ is applied, the device automatically turns on at the mid-point wiper location (64).

At power-down, it is recommended to turn-off first the signals on RH, RW and RL, followed by VDD, in order to avoid unexpected transitions of the wiper and uncontrolled current overload of the potentiometer.

The end-to-end nominal resistance of the potentiometer has 128 contact points linearly distributed across the total resistor. Each of these contact points is addressed by the 7 bit
wiper register which is decoded to select one of these 128 contact points.

Each contact point generates a linear resistive value between the 0 position and the 127 position. These values can be determined by dividing the end-to-end value of the potentiometer by 127. In the case of the $50 \mathrm{k} \Omega$ potentiometer $\sim 390 \Omega$ is the resistance between each wiper position. However in addition to the $\sim 390 \Omega$ for each resistive segment of the potentiometer, a wiper resistance offset must be considered. Table 13 shows the effect of this value and how it would appear on the wiper terminal.

Table 13. POTENTIOMETER RESISTANCE AND WIPER RESISTANCE OFFSET EFFECTS

Position	Typical RW to RL Resistance for $\mathbf{5 0} \mathbf{k} \boldsymbol{\prime}$ Digital Potentiometer	
00		70Ω or
01	$0 \Omega+70 \Omega$	
63	460Ω or	$390 \Omega+70 \Omega$
127	$24,870 \Omega$ or	$24,800 \Omega+70 \Omega$
	$50,070 \Omega$ or	$50,000 \Omega+70 \Omega$

CAT5136, CAT5137, CAT5138

Table 14. ORDERING INFORMATION

Device Order Number	Specific Device Marking	Package Type	Temperature Range	Resistance $\mathbf{(k \Omega)}$	Lead Finish	Shipping ${ }^{\dagger}$

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
13. For detailed information and a breakdown of device nomenclature and numbering systems, please see the ON Semiconductor Device Nomenclature document, TND310/D, available at www.onsemi.com
14. Contact factory for availability.

TOP VIEW

SYMBOL	MIN	NOM	MAX	
A	0.80		1.10	
A1	0.00		0.10	
A2	0.80		1.00	
b	0.15		0.30	
c	0.10		0.18	
D	1.80	2.00	2.20	
E	1.80	2.10	2.40	
E1	1.15	1.25	1.35	
e	0.65 BSC			
L	0.26	0.36	0.46	
L1	0.42 REF			
L2	0.15 BSC			
θ	0°		8°	
$\theta 1$	4°		10°	

SIDE VIEW

END VIEW

Notes:
(1) All dimensions are in millimeters. Angles in degrees.
(2) Complies with JEDEC MO-203.

| DOCUMENT NUMBER: | 98AON34266E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88 (SC-70 6 LEAD), 1.25X2 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Potentiometer ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
604-00010 CAT5111VI-10-GT3 CAT5110TBI-10GT3 CAT5111LI-10-G X9C103S CAT5110TBI-50GT3 CAT5112ZI-50-GT3 CAT5111YI-10-GT3 MCP4251-503EML MCP4351-502E/ML MCP4641-502E/ST MCP4651T-503E/ML MCP4162-103E/SN MCP4451103E/ML MCP4532T-103E/MF MCP4631-503E/ST MCP4661-502E/ST CAT5113VI-00-GT3 MCP4641T-502E/ML MCP4021-103E/MS DS1855E-010+ MAX5160LEUA+T MCP4231T-503E/ML MCP4142-104E/MF AD5260BRUZ200-RL7 CAT5113LI-10-G CAT5113LI-50G CAT5114LI-00-G AD5116BCPZ10-500R7 AD5116BCPZ5-500R7 AD5116BCPZ80-500R7 AD5122ABCPZ100-RL7 AD5122ABRUZ100 AD5122BCPZ10-RL7 AD5142ABRUZ100 AD5143BCPZ10-RL7 AD5253BRUZ10 AD5253BRUZ50 AD5254BRUZ1-RL7 AD5144TRUZ10-EP AD5160BRJZ10-RL7 AD5161BRMZ10 AD5161BRMZ100 AD5161BRMZ100-RL7

AD5161BRMZ5 AD5161BRMZ50-RL7 AD5161BRMZ5-RL7 AD5162BRMZ100 AD5170BRMZ2.5-RL7 AD5162BRMZ10-RL7

