SIM Card EMI Filter Array with ESD Protection

Product Description

The CM1402 is an EMI filter array with ESD protection, which integrates three pi filters (C–R–C) and two additional channels of ESD protection. The CM1402 has component values of 20 pF – 47 Ω – 20 pF, and 20 pF – 100 Ω – 20 pF. The parts include avalanche–type ESD diodes on every pin, which provide a very high level of protection for sensitive electronic components that may be subjected to electrostatic discharge (ESD). The ESD diodes connected to the filter ports are designed and characterized to safely dissipate ESD strikes of ±10 kV, beyond the maximum requirement of the IEC 61000–4–2 international standard. Using the MIL–STD–883 (Method 3015) specification for Human Body Model (HBM) ESD, the pins are protected for contact discharges at greater than ±25 kV.

The ESD diodes on pins A4 and C4 ports are designed and characterized to safely dissipate ESD strikes of ± 10 kV, well beyond the maximum requirement of the IEC 61000-4-2 international standard.

This device is particularly well suited for portable electronics (e.g. mobile handsets, PDAs, notebook computers) because of its small package format and easy-to-use pin assignments. In particular, the CM1402 is ideal for EMI filtering and protecting data lines from ESD for the SIM card slot in mobile handsets.

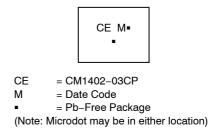
The CM1402 incorporates *OptiGuard*^{imessilon} coating which results in improved reliability at assembly. The CM1402 is available in a space-saving, low-profile Chip Scale Package.

Features

- Functionally and Pin-Compatible with CSPEMI400 Device
- *OptiGuard*[™] Coated for Improved Reliability at Assembly
- Three Channels of EMI Filtering, Each with ESD Protection
- Two Additional Channels of ESD-Only Protection
- ±10 kV ESD Protection (IEC 61000-4-2, Contact Discharge) on All Pins
- ±25 kV ESD Protection (HBM)
- Greater than 30 dB of Attenuation at 1 GHz
- 10-Bump, 1.960 mm x 1.330 mm Footprint Chip Scale Package (CSP)
- Chip Scale Package Features Extremely Low Lead Inductance for Optimum Filter and ESD Performance
- These Devices are Pb-Free and are RoHS Compliant

Applications

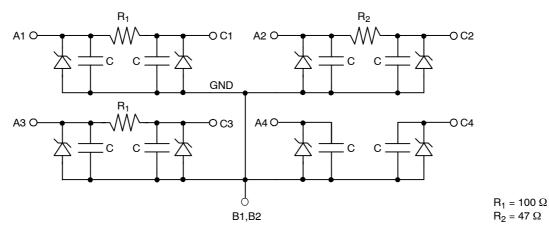
- SIM Card Slot in Mobile Handsets
- I/O Port Protection for Mobile Handsets, Notebook Computers, PDAs, etc.
- EMI Filtering for Data Ports in Cell Phones, PDAs or Notebook Computers


ON Semiconductor®

http://onsemi.com

WLCSP10 CP SUFFIX CASE 567BL

MARKING DIAGRAM



ORDERING INFORMATION

Device	Package	Shipping [†]
CM1402-03CP	CSP-10 (Pb-Free)	3500/Tape & Reel
	(PD-Free)	

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

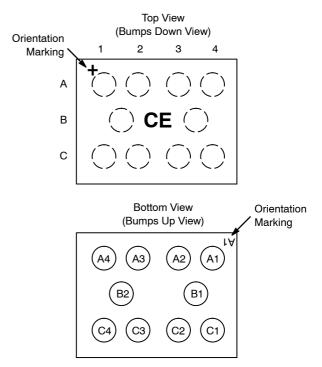

ELECTRICAL SCHEMATIC

Table 1. PIN DESCRIPTIONS

10-bump CSP Package				
Туре	Pin	Description		
EMI Filter	A1	EMI Filter with ESD Protection for RST Signal		
	C1	EMI Filter with ESD Protection for RST Signal		
EMI Filter	A2	EMI Filter with ESD Protection for CLK Signal		
	C2	EMI Filter with ESD Protection for CLK Signal		
Device Ground	B1	Device Ground		
Ground	B2	Device Ground		
EMI Filter	AЗ	EMI Filter with ESD Protection for DAT Signal		
	СЗ	EMI Filter with ESD Protection for DAT Signal		
ESD Channel	A4	ESD Protection Channel – V _{CC} Supply		
ESD Channel	C4	ESD Protection Channel		

PACKAGE / PINOUT DIAGRAMS

CM1402 CSP Package with OptiGuard coating

SPECIFICATIONS

Table 2. ABSOLUTE MAXIMUM RATINGS

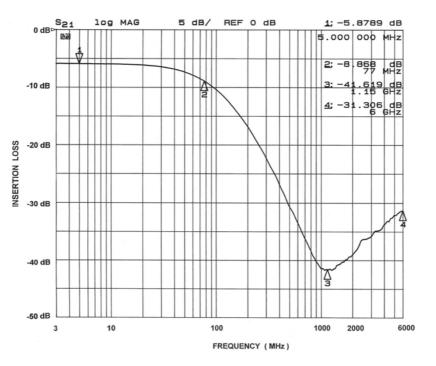
Parameter	Rating	Units
Storage Temperature Range	65 to +150	°C
DC Power per Resistor	100	mW
DC Package Power Rating	300	mW

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. STANDARD OPERATING CONDITIONS

Parameter	Rating	Units
Operating Temperature Range	-40 to +85	°C

Table 4. ELECTRICAL OPERATING CHARACTERISTICS (Note 1)


Symbol	Parameter	Conditions	Min	Тур	Max	Units
R ₁	Resistance of R ₁		80	100	120	Ω
R ₂	Resistance of R ₂		38	47	56	Ω
С	Capacitance	VIN = 2.5 VDC, 1 MHz, 30 mV ac	16	20	24	pF
V _{STANDOFF}	Stand-off Voltage	I = 10 μA		6.0		V
I _{LEAK}	Diode Leakage Current	V _{BIAS} = 3.3 V		0.1	1.0	μΑ
V _{SIG}	Signal Voltage Positive Clamp Negative Clamp	I _{LOAD} = 10 mA I _{LOAD} = -10 mA	5.6 -1.5	6.8 0.8	9.0 -0.4	V
V _{ESD}	In–system ESD Withstand Voltage a) Human Body Model, MIL–STD–883, Method 3015 b) Contact Discharge per IEC 61000–4–2	(Notes 2 and 4)	±25 ±10			kV
V _{CL}	Clamping Voltage during ESD Discharge MIL–STD–883 (Method 3015), 8 kV Positive Transients Negative Transients	(Notes 2, 3 and 4)			+12 _7	V
f _{C1}	Cut–off Frequency Z_{SOURCE} = 50 Ω , Z_{LOAD} = 50 Ω	R = 100 Ω, C = 20 pF		77		MHz
f _{C2}	Cut–off Frequency Z_{SOURCE} = 50 Ω , Z_{LOAD} = 50 Ω	R = 47 Ω, C = 20 pF		85		MHz

T_A = 25°C unless otherwise specified.
ESD applied to input and output pins with respect to GND, one at a time.
Clamping voltage is measured at the opposite side of the EMI filter to the ESD pin. For example, if ESD is applied to Pin A1, then clamping voltage is measured at Pin C1.

4. Unused pins are left open.

PERFORMANCE INFORMATION

Typical Filter Performance (nominal conditions unless specified otherwise, 50 Ω Environment)

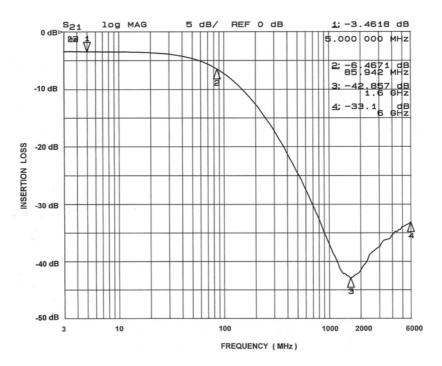
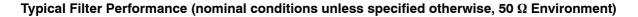
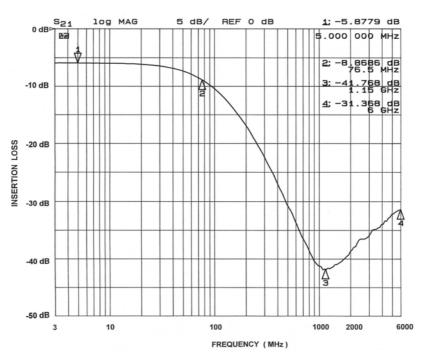




Figure 2. A2–C2 EMI Filter Performance

PERFORMANCE INFORMATION (Cont'd)

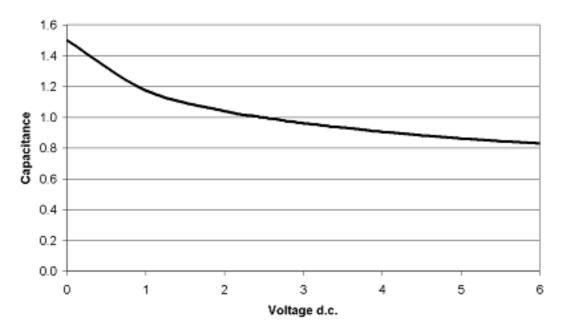


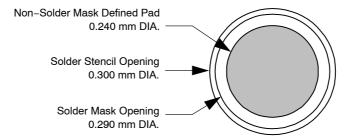
Figure 4. Typical Diode Capacitance vs. Input Voltage (normalized to 2.5 VDC)

APPLICATION INFORMATION

The CM1402 provides a bidirectional filter and protector for all the signals and the power line on the SIM (subscriber identity module) card connector. SIM cards are found in all GSM cellular phones and in some other handheld devices or card readers. The ESD diodes protect the controller against possible ESD strikes that may occur when the connector pins are exposed during direct contact, or during insertion of the SIM card into the card slot. The EMI filter suppresses all high–frequency noise, preventing the unwanted EMI signals from both entering and exiting the main board. The signals that interface with the SIM card are the Reset, the Clock and the bidirectional data I/O, as shown in Typical Application Diagram for the SIM Card Interface.

Note: One channel of the CM1402 with a zener diode is not shown on the diagram.

Figure 5. Typical Application Diagram for the SIM Card Interface


For best filter and ESD performance, both GND bumps (B1, B2) of the CM1402 should be directly connected to the Ground plane. A small capacitor of about 1 μ F is required next to the V_{CC} pin of the SIM connector in order to improve stability of the SIM card supply rail.

For information on the assembly of the CM1402 to the PCB (printed circuit board), please refer to the Chip Scale Package (CSP) Application Note AP217, or contact factory at 800–282–9855 for technical support.

APPLICATION INFORMATION

Table 5. PRINTED CIRCUIT BOARD RECOMMENDATIONS

Parameter	Value	
Pad Size on PCB	0.240 mm	
Pad Shape	Round	
Pad Definition	Non-Solder Mask defined pads	
Solder Mask Opening	0.290 mm Round	
Solder Stencil Thickness	0.125 – 0.150 mm	
Solder Stencil Aperture Opening (laser cut, 5% tapered walls)	0.300 mm Round	
Solder Flux Ratio	50/50 by volume	
Solder Paste Type	No Clean	
Pad Protective Finish	OSP (Entek Cu Plus 106A)	
Tolerance – Edge To Corner Ball	±50 μm	
Solder Ball Side Coplanarity	±20 μm	
Maximum Dwell Time Above Liquidous (183°C)	60 seconds	
Maximum Soldering Temperature for Lead-free Devices using a Lead-free Solder Paste	260°C	

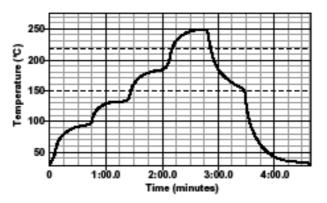
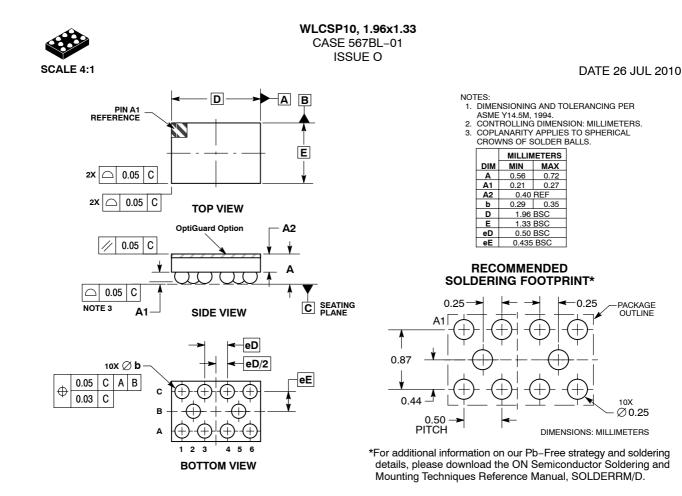



Figure 7. Lead-free (SnAgCu) Solder Ball Reflow Profile

OptiGuard[™] is a trademark of Semiconductor Components Industries, LLC (SCILLC).

DOCUMENT NUMBER:	98AON49820E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	WLCSP10, 1.96X1.33		PAGE 1 OF 1		
ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the					

© Semiconductor Components Industries, LLC, 2019

rights of others.

onsemi, OnSemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters, including "Typicals" must be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for EMI Filter Circuits category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

761280-1 SBSGC0500224MXB SBSPP0250104MXT SBSPP0250154MXT SBSPP0500473MXT SBSPP1000102MXT SBSPP1000153MXB SBSPP1000220MCT SBSPP1000332MXT SBSPP1000470MCT SBSPP1000471MCT SBSPP1000472MXT SNZF220DFT1G CM1442-06CP EMI8041MUTAG SBSPP0500473MXB SBSPP0500683MXT SBSPP1000101MCT SBSPP1000220MCB SBSPP1000221MCT EMIF06-USD05F3 EMIF03-SIM03F3 EMI7112FCTAG EMI7403FCTBG EMI2180MTTBG CM1442-08CP CSPEMI204FCTAG SBSPP1000152MXT SBSGC5000473MXT SBSMC0500474MXT EMI8043MUTAG MEA2010PE360T001 NFA18SL307V1A45L 1-6609037-5 CM1690-06DE EMIF05-SK01F3 EMIF02-USB03F2 BNX022-01L BNX024H01L BNX025H01L BNX026H01L NFA21SL806X1A48L NFL18SP157X1A3D NFL21SP106X1C3D NFL21SP207X1C3D NFL21SP307X1C3D NFL21SP506X1C3D NFL21SP706X1C3D NFW31SP207X1E4L BNX022-01B