LCD and Camera EMI Filter Array with ESD Protection

Description

The CM1451 is an inductor-capacitor (L-C) based EMI filter array with integrated ESD protection in CSP. The CM1451-06 and CM1451-08 are configured in 6 and 8 channel formats respectively. Each channel is implemented as a 5-pole L-C filter with the component values 9.5 pF - 17 nH - 9.5 pF - 17 nF - 9.5 pF. The CM1451's roll-off frequency at -10 dB attenuation is 500 MHz. It can be used in applications where the data rates are as high as 200 Mbps while providing greater than 35 dB attenuation over the 800 MHz to 2.7 GHz frequency range. The device has ESD protection diodes on every pin that provide a very high level of protection for sensitive electronic components that may be subjected to electrostatic discharge (ESD). The ESD protection diodes connected to the filter ports safely dissipate ESD strikes of ±15 kV, exceeding the Level 4 requirement of the IEC61000-4-2 international standard. Using the MIL-STD-883 (Method 3015) specification for Human Body Model (HBM) ESD, the pins are protected for contact discharges at greater than ± 30 kV.

This device is particularly well-suited for portable electronics (e.g. wireless handsets, PDAs) because of its small package format and easy-to-use pin assignments. In particular, the CM1451 is ideal for EMI filtering and protecting data and control lines for the LCD display and camera interface in wireless handsets while maintaining the integrity of signals that have rise/fall times as fast as 2 ns.

The CM1451 incorporates OptiGuard, a coating that results in improved reliability at assembly. The CM1451 is available in a space–saving, low–profile Chip Scale Package with RoHS compliant lead–free finishing.

Features

- High Bandwidth, High RF Rejection Filter Array
- Six and Eight Channels of EMI Filtering
- Utilizes Inductor-Based Design Technology for True L-C Filter Implementation
- OptiGuard Coating for Improved Reliability
- Chip Scale Package (CSP) Features Extremely Low Lead Inductance for Optimum Filter and ESD Performance
- 15 kV ESD Protection on Each Channel (IEC 61000-4-2 Level 4, Contact Discharge)
- 30 kV ESD Protection on Each Channel (HBM)
- Better than 40 dB of Attenuation at 1 GHz
- Maintains Signal Integrity for Signals that Have a Risetime and Falltime as Fast as 2 ns

Applications

- LCD and Camera Data Lines in Mobile Handsets
- I/O Port Protection for Mobile Handsets, Notebook Computers, PDAs, etc.
- Wireless Handsets / Cell Phones

ON Semiconductor®

http://onsemi.com

WLCSP15 CP SUFFIX CASE 567BT WLCSP20 CP SUFFIX CASE 567CL

MARKING DIAGRAM

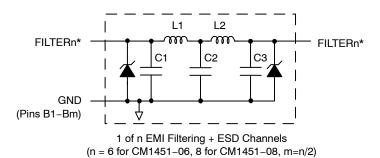
N516

N518

CM1451-06 15-Bump CSP Package CM1451-08 20-Bump CSP Package

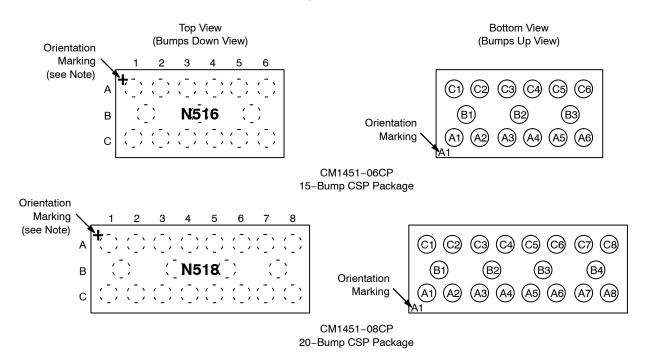
N516 = CM1451-06CP N518 = CM1451-08CP

ORDERING INFORMATION


Device	Package	Shipping [†]
CM1451-06CP	CSP-15 (Pb-Free)	3500/Tape & Reel
CM1451-08CP	CSP-20 (Pb-Free)	3500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure. BRD8011/D.

- 15-Bump, 3.006 mm x 1.376 mm Footprint Chip Scale Package (CM1451-06CP)
- 20-Bump, 4.006 mm x 1.376 mm Footprint Chip Scale Package (CM1451-08CP)
- These Devices are Pb-Free and are RoHS Compliant
- EMI Filtering for Data Ports in Cell Phones, PDAs or Notebook Computers
- Handheld PCs / PDAs
- LCD and Camera Modules


CM1451

BLOCK DIAGRAM

*See Package/Pinout Diagrams for expanded pin information.

PACKAGE / PINOUT DIAGRAMS

Note: Lead-free devices are specified by using a "+" character for the top side orientation mark.

Table 1. PIN DESCRIPTIONS

CM1451-06	CM1451-08			CM1451-06	CM1451-08		
Pin(s)	Pin(s)	Name	Description	Pin(s)	Pin(s)	Name	Description
A1	A1	FILTER1	Filter Channel 1	C1	C1	FILTER1	Filter Channel 1
A2	A2	FILTER2	Filter Channel 2	C2	C2	FILTER2	Filter Channel 2
A3	A3	FILTER3	Filter Channel 3	СЗ	C3	FILTER3	Filter Channel 3
A4	A4	FILTER4	Filter Channel 4	C4	C4	FILTER4	Filter Channel 4
A5	A 5	FILTER5	Filter Channel 5	C5	C5	FILTER5	Filter Channel 5
A6	A6	FILTER6	Filter Channel 6	C6	C6	FILTER6	Filter Channel 6
-	A7	FILTER7	Filter Channel 7	-	C7	FILTER7	Filter Channel 7
-	A8	FILTER8	Filter Channel 8	-	C8	FILTER8	Filter Channel 8
B1-B3	B1-B4	GND	Device Ground				

CM1451

SPECIFICATIONS

Table 2. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units
Storage Temperature Range	-65 to +150	°C
Current per Inductor	30	mA
DC Package Power Rating	500	mW

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. STANDARD OPERATING CONDITIONS

Parameter	Rating	Units
Operating Temperature Range	-40 to +85	°C

Table 4. ELECTRICAL OPERATING CHARACTERISTICS (Note 1)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
L _{TOT}	Total Channel Inductance (L ₁ + L ₂)			34		nΗ
L ₁ , L ₂	Inductance			17		nΗ
R _{DC IN-OUT}	DC Channel Resistance			18		Ω
C _{TOT}	Total Channel Capacitance (C ₁ + C ₂ + C ₃)	At 2.5 V DC, 1 MHz, 30 mV AC	22.8	28.5	34.2	pF
C ₁ , C ₂ , C ₃	Capacitance	At 2.5 V DC, 1 MHz, 30 mV AC	7.6	9.5	11.4	pF
f _C	Cut-off Frequency Z_{SOURCE} = 50 Ω , Z_{LOAD} = 50 Ω			260		MHz
f _{RO}	Roll–off Frequency at –10 dB Attenuation Z_{SOURCE} = 50 Ω , Z_{LOAD} = 50 Ω			500		MHz
V _{DIODE}	Diode Standoff Voltage	I _{DIODE} = 10 μA		6.0		٧
I _{LEAK}	Diode Leakage Current	V _{DIODE} = +3.3 V		0.1	1.0	μΑ
V _{SIG}	Signal Clamp Voltage Positive Clamp Negative Clamp	I _{LOAD} = 10 mA	5.6 -1.5	6.8 -0.8	9.0 -0.4	V
V _{ESD}	In-system ESD Withstand Voltage a) Human Body Model, MIL-STD-883, Method 3015 b) Contact Discharge per IEC 61000-4-2 Level 4	(Note 2)	30 15			kV
R _{DYN}	Dynamic Resistance Positive Negative			2.30 0.90		Ω

^{1.} $T_A = 25^{\circ}C$ unless otherwise specified. 2. ESD applied to input and output pins with respect to GND, one at a time.

PERFORMANCE INFORMATION

Typical Filter Performance (T_A = 25°C, DC Bias = 0 V, 50 Ω Environment)

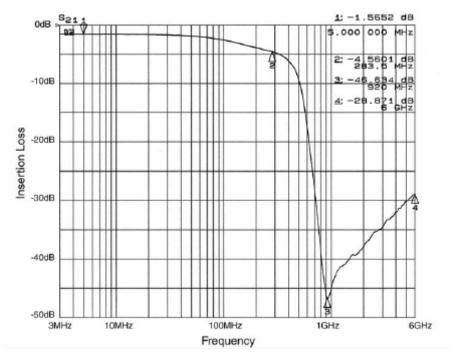


Figure 1. Insertion Loss vs. Frequency (A1-C1 to GND B1)

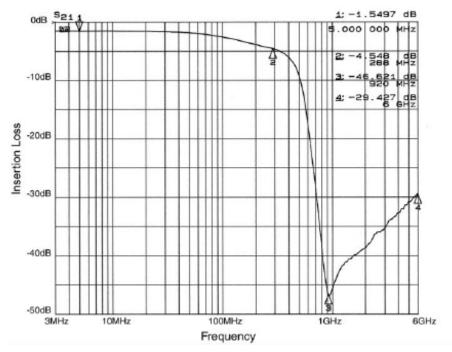


Figure 2. Insertion Loss vs. Frequency (A2-C2 to GND B1)

PERFORMANCE INFORMATION (Cont'd)

Typical Filter Performance (T_A = 25°C, DC Bias = 0 V, 50 Ω Environment)

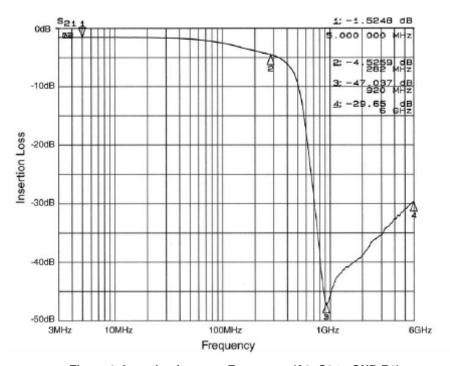


Figure 3. Insertion Loss vs. Frequency (A3-C3 to GND B2)

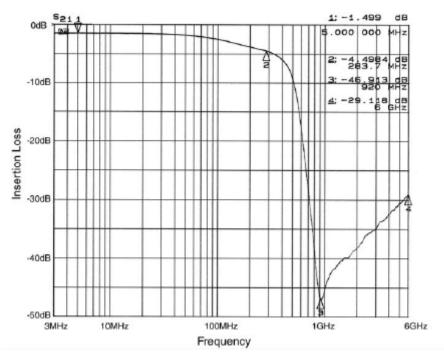


Figure 4. Insertion Loss vs. Frequency (A4-C4 to GND B2)

PERFORMANCE INFORMATION (Cont'd)

Typical Filter Performance (T_A = 25°C, DC Bias = 0 V, 50 Ω Environment)

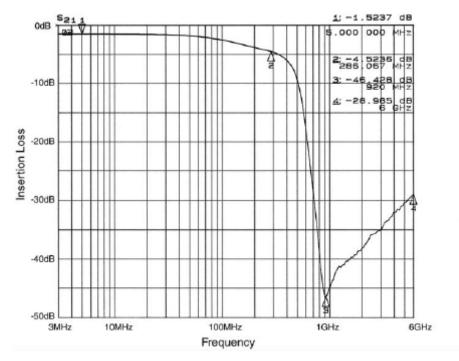


Figure 5. Insertion Loss vs. Frequency (A5-C5 to GND B3)

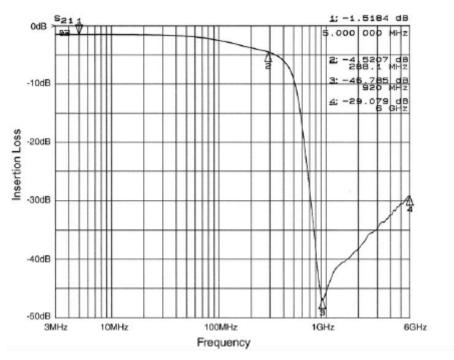


Figure 6. Insertion Loss vs. Frequency (A6-C6 to GND B3)

PERFORMANCE INFORMATION (Cont'd)

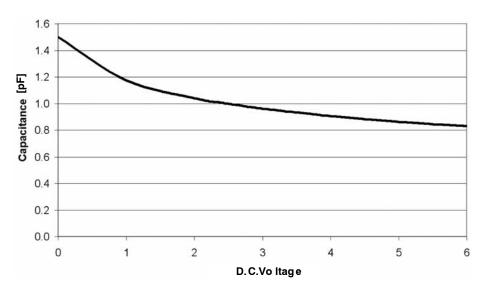


Figure 7. Filter Capacitance vs. Input Voltage over Temperature (normalized to capacitance at 2.5 VDC and 25°C)

Transient Response Characteristics

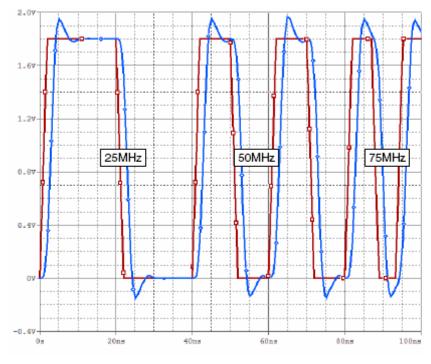


Figure 8. Simulated Transient Response (input signal risetime and falltime = 2 ns, clocked at 25, 50 and 75 MHz, 15 Ω Source Resistance, 5 pF Load)

CM1451

APPLICATION INFORMATION

Table 5. PRINTED CIRCUIT BOARD RECOMMENDATIONS

Parameter	Value
Pad Size on PCB	0.240 mm
Pad Shape	Round
Pad Definition	Non-Solder Mask defined pads
Solder Mask Opening	0.290 mm Round
Solder Stencil Thickness	0.125 – 0.150 mm
Solder Stencil Aperture Opening (laser cut, 5% tapered walls)	0.300 mm Round
Solder Flux Ratio	50/50 by volume
Solder Paste Type	No Clean
Pad Protective Finish	OSP (Entek Cu Plus 106A)
Tolerance – Edge To Corner Ball	±50 μm
Solder Ball Side Coplanarity	±20 μm
Maximum Dwell Time Above Liquidous	60 seconds
Maximum Soldering Temperature for Lead-free Devices using a Lead-free Solder Paste	260°C

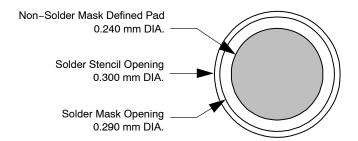


Figure 9. Recommended Non-Solder Mask Defined Pad Illustration

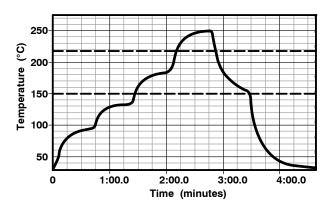
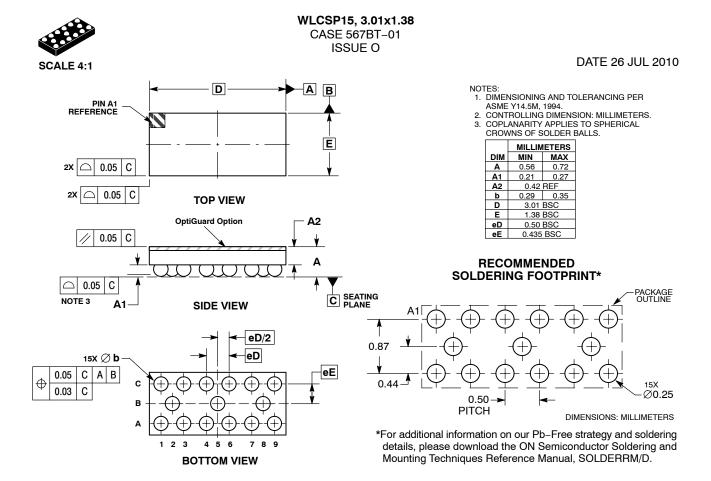
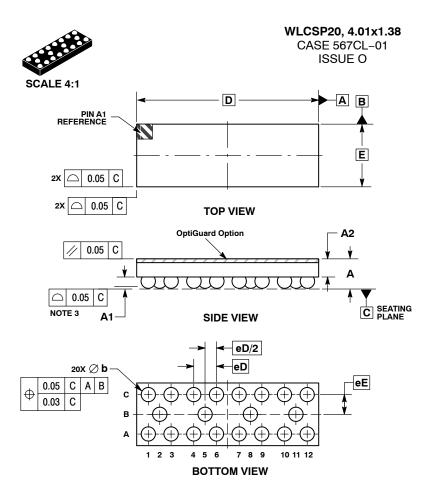
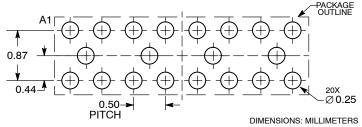




Figure 10. Lead-free (SnAgCu) Solder Ball Reflow Profile

DOCUMENT NUMBER:	98AON49827E	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	WLCSP15, 3.01X1.38		PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



DATE 26 JUL 2010

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS. COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS. 3.

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.56	0.72	
A1	0.21	0.27	
A2	0.42 REF		
b	0.29	0.35	
D	4.01 BSC		
E	1.38 BSC		
eD	0.50 BSC		
еE	0.435 BSC		

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON50484E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	WLCSP20, 4.01X1.38		PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

a Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for EMI Filter Circuits category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

761280-1 SBSGC0500224MXB SBSPP0250104MXT SBSPP0250154MXT SBSPP0500473MXT SBSPP1000102MXT

SBSPP1000153MXB SBSPP1000220MCT SBSPP1000332MXT SBSPP1000470MCT SBSPP1000471MCT SBSPP1000472MXT

SNZF220DFT1G CM1442-06CP EMI8041MUTAG SBSPP0500473MXB SBSPP1000101MCT SBSPP1000220MCB SBSPP1000221MCT

EMIF06-USD05F3 EMIF03-SIM03F3 EMI7112FCTAG EMI7403FCTBG EMI2180MTTBG CM1442-08CP CSPEMI204FCTAG

SBSPP1000152MXT SBSGC5000473MXT SBSMC0500474MXT EMI8043MUTAG MEA2010PE360T001 NFA18SL307V1A45L 16609037-5 CM1690-06DE EMIF05-SK01F3 EMIF02-USB03F2 BNX022-01L BNX024H01L BNX025H01L BNX026H01L

NFA21SL806X1A48L NFL18SP157X1A3D NFL21SP106X1C3D NFL21SP207X1C3D NFL21SP307X1C3D NFL21SP506X1C3D

NFL21SP706X1C3D NFW31SP207X1E4L BNX022-01B BNX027H01L