CNY17 Series, MOC8106M

6-Pin DIP High Bvceo Phototransistor Optocouplers

Description

The CNY17XM, CNY17FXM, and MOC8106M devices consist of a gallium arsenide infrared emitting diode coupled with an NPN phototransistor in a dual in-line package.

Features

- High BV ${ }_{\text {CEO }}: 70$ V Minimum (CNY17XM, CNY17FXM, MOC8106M)
- Closely Matched Current Transfer Ratio (CTR) Minimizes Unit-to-Unit Variation
- Current Transfer Ratio In Select Groups
- Very Low Coupled Capacitance Along With No Chip-to-Pin 6 Base Connection for Minimum Noise Susceptibility (CNY17FXM, MOC8106M)
- Safety and Regulatory Approvals:
- UL1577, 4,170 VACRMS for 1 Minute
- DIN-EN/IEC60747-5-5, 850 V Peak Working Insulation Voltage

Applications

- Power Supply Regulators
- Digital Logic Inputs
- Microprocessor Inputs
- Appliance Sensor Systems
- Industrial Controls

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

MARKING DIAGRAM

1. ON = Company Logo
2. CNY17 = Device Number
3. $V=$ DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)
$4 \mathrm{X}=$ One-Digit Year Code
4. YY = Digit Work Week
5. Q = Assembly Package Code

See detailed ordering and shipping information on page 8 of this data sheet

CNY17 Series, MOC8106M

SCHEMATICS

Figure 1. Schematics

SAFETY AND INSULATION RATINGS

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter		Characteristics
$\left.\begin{array}{l}\text { Installation Classifications per DIN VDE } \\ 0\end{array}\right)$	<150 V $_{\text {RMS }}$	I-IV
	<300 V $_{\text {RMS }}$	I-III
Climatic Classification	$55 / 100 / 21$	
Pollution Degree (DIN VDE 0110/1.89)	2	
Comparative Tracking Index	175	

Symbol	Parameter	Value	Unit
$V_{\text {PR }}$	Input-to-Output Test Voltage, Method A, $\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\mathrm{PR}}$, Type and Sample Test with $\mathrm{t}_{\mathrm{m}}=10 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$	1360	Vpeak
	Input-to-Output Test Voltage, Method B, $\mathrm{V}_{\mathrm{IORM}} \times 1.875=\mathrm{V}_{\mathrm{PR}}$, 100% Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$	1594	Vpeak
$\mathrm{V}_{\text {IORM }}$	Maximum Working Insulation Voltage	850	Vpeak
$\mathrm{V}_{\text {IOTM }}$	Highest Allowable Over-Voltage	6000	Vpeak
	External Creepage	≥ 7	mm
	External Clearance	≥ 7	mm
	External Clearance (for Option TV, 0.4" Lead Spacing)	≥ 10	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.5	mm
T_{S}	Case Temperature (Note 1)	175	${ }^{\circ} \mathrm{C}$
Is, inPut	Input Current (Note 1)	350	mA
$\mathrm{P}_{\mathrm{S} \text {, OUTPUT }}$	Output Power (Note 1)	800	mW
R_{IO}	Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$ (Note 1)	$>10^{9}$	Ω

[^0]ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Units

TOTAL DEVICE

$\mathrm{T}_{\text {STG }}$	Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Operating Temperature	-40 to +100	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Lead Solder Temperature	260 for 10 seconds	${ }^{\circ} \mathrm{C}$
P_{D}	Total Device Power Dissipation @ $25^{\circ} \mathrm{C}$ (LED plus detector) Derate Linearly From $25^{\circ} \mathrm{C}$	270	mW
		2.94	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

EMITTER

I_{F}	Continuous Forward Current	60	mA
$\mathrm{~V}_{\mathrm{R}}$	Reverse Voltage	6	V
$\mathrm{I}_{\mathrm{F}}(\mathrm{pk})$	Forward Current - Peak $(1 \mu \mathrm{~s}$ pulse, 300 pps$)$	1.5	A
P_{D}	LED Power Dissipation $25^{\circ} \mathrm{C}$ Ambient Derate Linearly From $25^{\circ} \mathrm{C}$	120	mW
		1.41	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

DETECTOR

I_{C}	Continuous Collector Current	50	mA
$\mathrm{~V}_{\mathrm{CEO}}$	Collector-Emitter Voltage	70	V
$\mathrm{~V}_{\mathrm{ECO}}$	Emitter Collector Voltage	7	V
P_{D}	Detector Power Dissipation @ $25^{\circ} \mathrm{C}$ Derate Linearly from $25^{\circ} \mathrm{C}$	150	mW
		1.76	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

INDIVIDUAL COMPONENT CHARACTERISTICS

Symbol	Parameter	Test Conditions	Device	Min.	Typ.	Max.	Unit
EMITTER							
V_{F}	Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	All Devices	1.0	1.15	1.50	V
		$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$	CNY17XM, CNY17FXM	1.0	1.35	1.65	V
CJ	Capacitance	$\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	All Devices		18		pF
I_{R}	Reverse Leakage Current	$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$	All Devices		0.001	10	$\mu \mathrm{A}$

DETECTOR

BV CEEO	Breakdown Voltage Collector-to-Emitter	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0$	All Devices	70	100		V
$\mathrm{BV}_{\text {cbo }}$	Collector-to-Base	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$	CNY17XM	70	120		V
$\mathrm{BV}_{\mathrm{ECO}}$	Emitter-to-Collector	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$	All Devices	7	10		V
ICEO	Leakage Current Collector-to-Emitter	$\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$	All Devices		1	50	nA
$\mathrm{I}_{\text {Cbo }}$	Collector-to-Base	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$	CNY17XM			20	nA
$\mathrm{C}_{\text {ce }}$	Capacitance Collector-to-Emitter	$V_{C E}=0, f=1 \mathrm{MHz}$	All Devices		8		pF
C_{CB}	Collector-to-Base	$V_{C B}=0, f=1 \mathrm{MHz}$	CNY17XM		20		pF
C_{EB}	Emitter-to-Base	$V_{E B}=0, f=1 \mathrm{MHz}$	CNY17XM		10		pF

TRANSFER CHARACTERISTICS

Symbol	Parameter	Test Conditions	Device	Min.	Typ.	Max.	Unit

COUPLED

CTR	Current Transfer Ratio	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$	MOC8106M	50	150	\%
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	CNY171M, CNY17F1M	40	80	\%
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	CNY172M, CNY17F2M	63	125	\%
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	CNY173M, CNY17F3M	100	200	\%
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	CNY174M, CNY17F4M	160	320	\%
$\mathrm{V}_{\text {CE(SAT) }}$	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	MOC8106M		0.4	V
		$\mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	CNY17XM/CNY17FXM			

AC CHARACTERISTICS

Symbol	Parameter	Test Conditions	Device	Min.	Typ.	Max.	Unit

NON-SATURATED SWITCHING TIME

ton	Turn-On Time	$\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	All Devices		2.0	10.0	$\mu \mathrm{~s}$
toff	Turn-Off Time	$\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	All Devices		3.0	10.0	$\mu \mathrm{~s}$
t_{d}	Delay Time	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=75 \Omega$	CNY17XM/CNY17FXM			5.6	$\mu \mathrm{~s}$
t_{r}	Rise Time	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=75 \Omega$	CNY17XM/CNY17FXM			4.0	$\mu \mathrm{~s}$
t_{s}	Storage Time	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=75 \Omega$	CNY17XM/CNY17FXM			4.1	$\mu \mathrm{~s}$
t_{f}	Fall Time	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=75 \Omega$	CNY17XM/CNY17FXM			3.5	$\mu \mathrm{~s}$

SATURATED SWITCHING TIME

$\mathrm{t}_{\text {d }}$	Delay Time	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	CNY171M/F1M			5.5	$\mu \mathrm{s}$
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	CNY172M/3M/4M CNY17F2M/F3M/F4M			8.0	$\mu \mathrm{s}$
t_{r}	Rise Time	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	CNY171M/F1M			4.0	$\mu \mathrm{S}$
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	CNY172M/3M/4M CNY17F2M/F3M/F4M			6.0	$\mu \mathrm{s}$
$\mathrm{t}_{\text {s }}$	Storage Time	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	CNY171M/F1M			34.0	$\mu \mathrm{S}$
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	CNY172M/3M/4M CNY17F2M/F3M/F4M			39.0	$\mu \mathrm{S}$
t_{f}	Fall Time	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	CNY171M/F1M			20.0	$\mu \mathrm{S}$
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	CNY172M/3M/4M CNY17F2M/F3M/F4M			24.0	$\mu \mathrm{S}$

ISOLATION CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
VISO	Input-Output Isolation Voltage	$\mathrm{t}=1$ Minute	4170			$\mathrm{VAC}_{\text {RMS }}$
CISO	Isolation Capacitance	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		0.2		pF
RISO	Isolation Resistance	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}= \pm 500 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10^{11}		Ω	

Figure 2. Normalized CTR vs. Forward Current

Figure 4. CTR vs. RBE (Unsaturated)

Figure 6. Switching Speed vs. Load Resistor

Figure 3. Normalized CTR vs. Ambient Temperature

Figure 5. CTR vs. RBE (Saturated)

Figure 7. Normalized t_{on} vs. R_{BE}

CNY17 Series, MOC8106M

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Figure 8. Normalized $\mathrm{t}_{\text {off }}$ vs. \mathbf{R}_{BE}

Figure 9. LED Forward Voltage vs. Forward Current

Figure 10. Collector-Emitter Saturation Voltage vs. Collector Current

SWITCHING TEST CIRCUIT AND WAVEFORMS

Figure 11. Switching Test Circuit and Waveforms

CNY17 Series, MOC8106M

REFLOW PROFILE

Figure 12. Reflow Profile

Profile Feature	Pb - Free Assembly Profile
Temperature Min. (Tsmin)	$150^{\circ} \mathrm{C}$
Temperature Max. (Tsmax)	$200^{\circ} \mathrm{C}$
Time (t_{s}) from (Tsmin to Tsmax)	$60-120$ seconds
Ramp - up Rate (tto $\left.\mathrm{t}_{\mathrm{P}}\right)$	$3^{\circ} \mathrm{C} /$ second max.
Liquidous Temperature (T_{L})	$217^{\circ} \mathrm{C}$
Time (t_{L}) Maintained Above (T_{L})	$60-150$ seconds
Peak Body Package Temperature	$260^{\circ} \mathrm{C}+0^{\circ} \mathrm{C} /-5^{\circ} \mathrm{C}$
Time (t_{P}) within $5^{\circ} \mathrm{C}$ of $260^{\circ} \mathrm{C}$	30 seconds
Ramp - down Rate (T_{P} to T_{L})	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to Peak Temperature	8 minutes max.

Table 1. ORDERING INFORMATION

Part Number	Package	Packing Method \dagger
CNY171M	DIP 6-Pin	Tube (50 Units)
CNY171SM	SMT 6-Pin (Lead Bend)	Tube (50 Units)
CNY171SR2M	SMT 6-Pin (Lead Bend)	Tape and Reel (1000 Units)
CNY171TM	DIP 6-Pin, 0.4" Lead Spacing	Tube (50 Units)
CNY171VM	DIP 6-Pin, DIN EN/IEC60747-5-5 Option	Tube (50 Units)
CNY171SVM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tube (50 Units)
CNY171SR2VM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tape and Reel (1000 Units)
CNY171TVM	DIP 6-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 Option	Tube (50 Units)

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
2. The product orderable part number system listed in this table also applies to the CNY17FXM product family and the MOC8106M device.

PDIP6 8.51x6.35, 2.54P
CASE 646BX ISSUE O

NOTES:
A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

| DOCUMENT NUMBER: | 98AON13449G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP6 8.51X6.35, 2.54P | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

PDIP6 8.51x6.35, 2.54P
CASE 646BY
ISSUE A
DATE 15 JUL 2019

| DOCUMENT NUMBER: | 98AON13450G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP6 8.51x6.35, 2.54P | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

NOTES:
A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

| DOCUMENT NUMBER: | 98AON13451G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP6 8.51X6.35, 2.54P | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Transistor Output Optocouplers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
LTV-814S-TA LTV-824HS 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD2-X006 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S PS2561-1-V-W-A PS2561AL-1-VA PS2561L1-1-L-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F1 X007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD615-1X007 ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPCA21068AA WPPC-D11066AA WPPC-D21068ED WPPC-D410616EA WPPC-D410616ED

[^0]: 1. Safety limit values - maximum values allowed in the event of a failure.
