EMD5DXV6T5G

Dual Bias Resistor
 Transistors

NPN and PNP Silicon Surface Mount
Transistors with Monolithic Bias Resistor Network

The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. These digital transistors are designed to replace a single device and its external resistor bias network. The BRT eliminates these individual components by integrating them into a single device. In the EMD5DXV6 series, two complementary BRT devices are housed in the SOT-563 package which is ideal for low power surface mount applications where board space is at a premium.

Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- Available in $8 \mathrm{~mm}, 7$ inch Tape and Reel
- Lead Free Solder Plating
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

(3) (2) (1)
(4) (5)
MARKING DIAGRAM
U5 = Specific Device Code M = Month Code - = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping †
EMD5DXV6T5G	SOT-563 (Pb-Free)	 Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

EMD5DXV6T5G

MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted, common for Q_{1} and Q_{2}, - minus sign for Q_{1} (PNP) omitted)

Rating	Symbol	Value	Unit
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	50	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	50	Vdc
Collector Current	I_{C}	100	mAdc

THERMAL CHARACTERISTICS

Characteristic (One Junction Heated)	Symbol	Max	Unit
Total Device Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{gathered} \hline 357 \\ \text { (Note 1) } \\ 2.9 \\ \text { (Note 1) } \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	$\begin{gathered} 350 \\ \text { (Note 1) } \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Characteristic (Both Junctions Heated)	Symbol	Max	Unit
Total Device Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} \hline 500 \\ (\text { Note 1) } \\ 4.0 \\ \text { (Note 1) } \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	$\begin{gathered} 250 \\ \text { (Note 1) } \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	$\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. FR-4 @ Minimum Pad

EMD5DXV6T5G

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

Q1 TRANSISTOR: PNP
OFF CHARACTERISTICS

Collector-Base Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\mathrm{CBO}}$	-	-	100	nAdc
Collector-Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{I}_{\mathrm{CEO}}$	-	-	500	nAdc
Emitter-Base Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=6.0, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}\right)$	$\mathrm{I}_{\mathrm{EBO}}$	-	-	1.0	mAdc

ON CHARACTERISTICS

Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	50	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	50	-	-	Vdc
DC Current Gain ($\left.\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}\right)$	h_{FE}	20	35	-	
Collector-Emitter Saturation Voltage $\left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.3 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{CE}(\mathrm{SAT})}$	-	-	0.25	Vdc
Output Voltage (on) $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right)$	V_{OL}	-	-	0.2	Vdc
Output Voltage (off) $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right)$	V_{OH}	4.9	-	-	Vdc
Input Resistor	R 1	3.3	4.7	6.1	$\mathrm{k} \Omega$
Resistor Ratio	$\mathrm{R} 1 / \mathrm{R} 2$	0.38	0.47	0.56	

Q2 TRANSISTOR: NPN
OFF CHARACTERISTICS

Collector-Base Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\mathrm{CBO}}$	-	-	100	nAdc
Collector-Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{I}_{\mathrm{CEO}}$	-	-	500	nAdc
Emitter-Base Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=6.0, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}\right)$	$\mathrm{I}_{\mathrm{EBO}}$	-	-	0.1	mAdc

ON CHARACTERISTICS

Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	50	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	50	-	-	Vdc
DC Current Gain $\left(\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}\right)$	h_{FE}	80	140	-	
Collector-Emitter Saturation Voltage $\left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.3 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{CE}(\mathrm{SAT})}$	-	-	0.25	Vdc
Output Voltage (on) $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right)$	V_{OL}	-	-	0.2	Vdc
Output Voltage (off) $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right)$	V_{OH}	4.9	-	-	Vdc
Input Resistor	R 1	33	47	61	$\mathrm{k} \Omega$
Resistor Ratio	$\mathrm{R} 1 / \mathrm{R} 2$	0.8	1.0	1.2	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Figure 1. Derating Curve

EMD5DXV6T5G

TYPICAL ELECTRICAL CHARACTERISTICS - EMD5DXV6 PNP TRANSISTOR

Figure 2. $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ versus I_{C}

Figure 4. Output Capacitance

Figure 3. DC Current Gain

Figure 5. Output Current versus Input Voltage

EMD5DXV6T5G

TYPICAL ELECTRICAL CHARACTERISTICS - EMD5DXV6 NPN TRANSISTOR

Figure 6. $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ versus I_{C}

Figure 8. Output Capacitance

Figure 7. DC Current Gain

Figure 9. Output Current versus Input Voltage

Figure 10. Input Voltage versus Output Current

```
SOT-563, }6\mathrm{ LEAD
    CASE 463A
    ISSUE H
```

DATE 26 JAN 2021
SCALE 4:1
NDTES:

1. DIMENSIDNING AND TQLERANCING PER ASME Y14.5M, 2009.
2. CONTROLLING DIMENSIDN: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS DF BASE MATERIAL.

RECDMMENDED MIUNTING FEDTPRINT*

* For additional information on our Pb-Free strategy and soldering details, please download the ZN Semiconductor Soldering and Mounting Techniques Reference Manual, SGLDERRM/D.

DOCUMENT NUMBER:	98AON11126D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-563, 6 LEAD		PAGE 1 OF 2

ON Semiconductor and (0N are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
STYLE 1:
PIN 1 1. EMITTER 1
2. BASE 1
3. CDLLECTRR 2
4. EMITTER 2
5. BASE 2
6. CDLLECTAR 1
STYLE 4:
PIN 1. CDLLECTIR
2. CDLLECTIR
3. BASE
4. EMITTER
5. CILLECTIR
6. CDLLECTOR
STYLE 7:
PIN 1. CATHODE
2. ANDDE
3. CATHODE
4. CATHIDE
5. ANDDE
6. CATHIDE
STYLE 10:
PIN 1. CATHODE 1
2. N/C
3. CATHODE 2
4. ANDDE 2
5. N/C
6. ANDDE 1
STYLE
PIN 1.
1.
EMITTER 1
2. BASE 1
3. CDLLECTDR 2
4. EMITTER
6. CDLLECTOR 1
STYLE 2: STYLE 3:

STYLE 2
STYLE S: STYLE 3:
PIN 1. EMITTER 1
2. EMITTER 2
3. BASE 2
4. CDLLECTDR 2
5. BASE 1
6. CLLLECTIR 1

STYLE 5:
PIN 1. CATHODE
2. CATHIDE
3. ANDDE
4. ANDDE
5. CATHODE
6. CATHIDE

STYLE 8:
PIN 1. DRAIN
2. DRAIN
3. GATE
4. SDURCE
5. DRAIN
6. DRAIN

PIN 1. CATHODE 1
2. CATHIDE 1
3. ANDDE/ANDDE 2
4. CATHODE 2
5. CATHODE 2
6. ANDDE/ANDDE 1

STYLE 6:
PIN 1. CATHODE
2. ANDDE
3. CATHODE
4. CATHIDE
5. CATHODE
6. CATHEDE

STYLE 9:
PIN 1. SIURCE 1
2. GATE 1
3. DRAIN 2
4. SIURCE 2
5. GATE ?
6. DRAIN 1

```
GENERIC MARKING DIAGRAM*
```



```
XX = Specific Device Code
M = Month Code
- = Pb-Free Package
```

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " F ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON11126D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOT-563, 6 LEAD	PAGE 20 F

[^0]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - Pre-Biased category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
RN1607(TE85L,F) DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TKAT146 DTC144ECA-TP DTC144VUAT106 MUN5241T1G BCR158WH6327XTSA1 NSBA114TDP6T5G NSBA143ZF3T5G NSBC114YF3T5G NSBC123TF3T5G SMUN5235T1G SMUN5330DW1T1G SSVMUN5312DW1T2G RN1303(TE85L,F) RN4605(TE85L,F) TTEPROTOTYPE79 DDTC114EUAQ-7-F EMH15T2R SMUN2214T3G NSBC114TF3T5G NSBC143ZPDP6T5G NSVMUN5113DW1T3G SMUN5230DW1T1G SMUN5133T1G SMUN2214T1G DTC114EUA-TP NSBA144EF3T5G NSVDTA114EET1G 2SC2223-T1B-A 2SC3912-TB-E SMUN5237DW1T1G SMUN5213DW1T1G SMUN5114DW1T1G SMUN2111T1G NSVDTC144EM3T5G DTC124ECA-TP DTC123TM3T5G DTA114ECA-TP DTA113EM3T5G DCX115EK-7-F DTC113EM3T5G NSVMUN5135DW1T1G NSVDTC143ZM3T5G SMUN5335DW1T2G SMUN5216DW1T1G NSVMUN5312DW1T2G NSVMUN5215DW1T1G

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

