## EMF18XV6T5

# **Dual Transistor - Power Management**

## **NPN/PNP Dual (Complementary)**

#### **Features**

- Low  $V_{CE(SAT)}$ , < 0.5 V
- These are Pb-Free Devices

## **MAXIMUM RATINGS**

#### Q

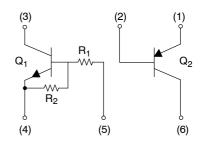
| Rating                    | Symbol           | Value | Unit |
|---------------------------|------------------|-------|------|
| Collector-Base Voltage    | V <sub>CBO</sub> | 50    | Vdc  |
| Collector-Emitter Voltage | V <sub>CEO</sub> | 50    | Vdc  |
| Collector Current         | Ic               | 100   | mAdc |

#### Q2

| Rating                         | Symbol           | Value | Unit |
|--------------------------------|------------------|-------|------|
| Collector - Emitter Voltage    | V <sub>CEO</sub> | -60   | V    |
| Collector - Base Voltage       | V <sub>CBO</sub> | -50   | V    |
| Emitter – Base Voltage         | V <sub>EBO</sub> | -6.0  | V    |
| Collector Current - Continuous | I <sub>C</sub>   | -100  | mAdc |

### THERMAL CHARACTERISTICS

| Characteristic<br>(One Junction Heated)                               | Symbol                | Max                               | Unit        |
|-----------------------------------------------------------------------|-----------------------|-----------------------------------|-------------|
| Total Device Dissipation $T_A = 25^{\circ}C$                          | $P_{D}$               | 357                               | mW          |
| Derate above 25°C                                                     |                       | (Note 1)<br>2.9<br>(Note 1)       | mW/°C       |
| Thermal Resistance,<br>Junction-to-Ambient                            | $R_{\theta JA}$       | 350<br>(Note 1)                   | °C/W        |
| Characteristic                                                        |                       |                                   |             |
| (Both Junctions Heated)                                               | Symbol                | Max                               | Unit        |
|                                                                       | Symbol P <sub>D</sub> | 500<br>(Note1)<br>4.0<br>(Note 1) | mW<br>mW/°C |
| (Both Junctions Heated)  Total Device Dissipation $T_A = 25^{\circ}C$ |                       | 500<br>(Note1)<br>4.0             | mW          |


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. FR-4 @ Minimum Pad.



## ON Semiconductor®

http://onsemi.com





SOT-563 CASE 463A PLASTIC

#### **MARKING DIAGRAM**



UV = Specific Device Code

M = Date Code

■ = Pb-Free Package

(Note: Microdot may be in either location)

### **ORDERING INFORMATION**

| Device      | Package              | Shipping <sup>†</sup> |
|-------------|----------------------|-----------------------|
| EMF18XV6T5  | SOT-563<br>(Pb-Free) | 8000/Tape & Reel      |
| EMF18XV6T5G | SOT-563<br>(Pb-Free) | 8000/Tape & Reel      |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications

## EMF18XV6T5

## **ELECTRICAL CHARACTERISTICS** $(T_A = 25^{\circ}C)$ (Note 2)

| Characteristic                                                                                           | Symbol               | Min  | Тур | Max  | Unit |
|----------------------------------------------------------------------------------------------------------|----------------------|------|-----|------|------|
| Q1: NPN                                                                                                  | •                    | •    | •   | •    | •    |
| Collector-Base Cutoff Current (V <sub>CB</sub> = 50 V, I <sub>E</sub> = 0)                               | I <sub>CBO</sub>     | -    | -   | 100  | nAdc |
| Collector-Emitter Cutoff Current (V <sub>CE</sub> = 50 V, I <sub>B</sub> = 0)                            | I <sub>CEO</sub>     | -    | -   | 500  | nAdc |
| Emitter-Base Cutoff Current (V <sub>EB</sub> = 6.0 V, I <sub>C</sub> = 0)                                | I <sub>EBO</sub>     | -    | -   | 0.1  | mAdc |
| Collector-Base Breakdown Voltage (I <sub>C</sub> = 10 μA, I <sub>E</sub> = 0)                            | V <sub>(BR)CBO</sub> | 50   | -   | -    | Vdc  |
| Collector-Emitter Breakdown Voltage (Note 4) ( $I_C = 2.0 \text{ mA}, I_B = 0$ )                         | V <sub>(BR)CEO</sub> | 50   | -   | -    | Vdc  |
| DC Current Gain (V <sub>CE</sub> = 10 V, I <sub>C</sub> = 5.0 mA)                                        | h <sub>FE</sub>      | 80   | 140 | -    |      |
| Collector-Emitter Saturation Voltage (I <sub>C</sub> = 10 mA, I <sub>B</sub> = 0.3 mA)                   | V <sub>CE(sat)</sub> | -    | -   | 0.25 | Vdc  |
| Output Voltage (on) (V <sub>CC</sub> = 5.0 V, V <sub>B</sub> = 3.5 V, R <sub>L</sub> = 1.0 k $\Omega$ )  | V <sub>OL</sub>      | -    | -   | 0.2  | Vdc  |
| Output Voltage (off) (V <sub>CC</sub> = 5.0 V, V <sub>B</sub> = 0.5 V, R <sub>L</sub> = 1.0 k $\Omega$ ) | V <sub>OH</sub>      | 4.9  | -   | -    | Vdc  |
| Input Resistor                                                                                           | R1                   | 32.9 | 47  | 61.1 | kΩ   |
| Resistor Ratio                                                                                           | R1/R2                | 0.8  | 1.0 | 1.2  |      |
| Q2: PNP                                                                                                  |                      |      |     |      |      |
| Collector-Base Breakdown Voltage ( $I_C = -50 \mu Adc, I_E = 0$ )                                        | V <sub>(BR)CBO</sub> | -60  | -   | -    | Vdc  |
| Collector-Emitter Breakdown Voltage (I <sub>C</sub> = -1.0 mAdc, I <sub>B</sub> = 0)                     | V <sub>(BR)CEO</sub> | -50  | -   | -    | Vdc  |
| Emitter–Base Breakdown Voltage ( $I_E = -50 \mu Adc$ , $I_E = 0$ )                                       | V <sub>(BR)EBO</sub> | -6.0 | -   | -    | Vdc  |
| Collector-Base Cutoff Current (V <sub>CB</sub> = -30 Vdc, I <sub>E</sub> = 0)                            | I <sub>CBO</sub>     | -    | -   | -0.5 | nA   |
| Emitter-Base Cutoff Current (V <sub>EB</sub> = -5.0 Vdc, I <sub>B</sub> = 0)                             | I <sub>EBO</sub>     | -    | -   | -0.5 | μΑ   |
| Collector–Emitter Saturation Voltage (Note 4) (I <sub>C</sub> = -50 mAdc, I <sub>B</sub> = -5.0 mAdc)    | V <sub>CE(sat)</sub> | -    | -   | -0.5 | Vdc  |
| DC Current Gain (Note 4) (V <sub>CE</sub> = -6.0 Vdc, I <sub>C</sub> = -1.0 mAdc)                        | h <sub>FE</sub>      | 120  | -   | 560  | -    |
| Transition Frequency ( $V_{CE} = -12 \text{ Vdc}$ , $I_{C} = -2.0 \text{ mAdc}$ , $f = 30 \text{ MHz}$ ) | f <sub>T</sub>       | -    | 140 | -    | MHz  |
| Output Capacitance (V <sub>CB</sub> = -12 Vdc, I <sub>E</sub> = 0 Adc, f = 1.0 MHz)                      | C <sub>OB</sub>      | _    | 3.5 | _    | рF   |

<sup>3.</sup> Device mounted on a FR-4 glass epoxy printed circuit board using the minimum recommended footprint. 4. Pulse Test: Pulse Width  $\leq$  300  $\mu$ s, D.C.  $\leq$  2%.

## TYPICAL ELECTRICAL CHARACTERISTICS — Q1, NPN

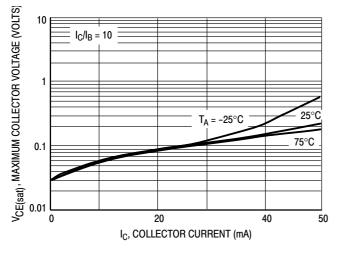



Figure 1.  $V_{CE(sat)}$  versus  $I_C$ 

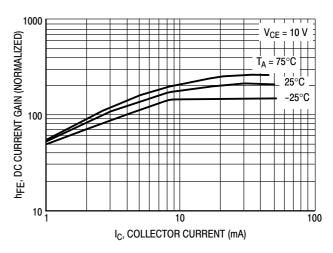



Figure 2. DC Current Gain

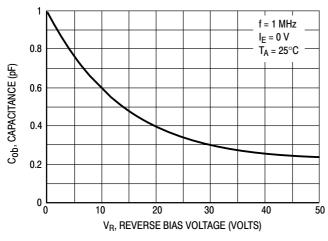



Figure 3. Output Capacitance

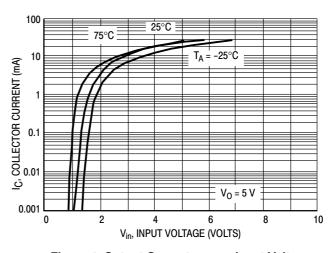



Figure 4. Output Current versus Input Voltage

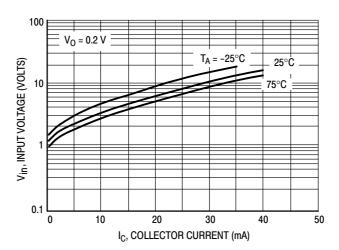
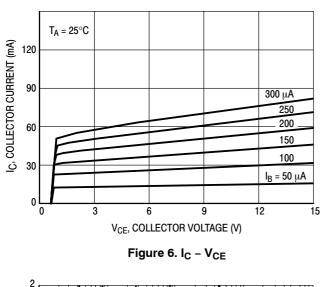




Figure 5. Input Voltage versus Output Current

### EMF18XV6T5

## TYPICAL ELECTRICAL CHARACTERISTICS - Q2, PNP



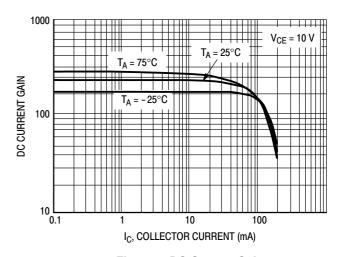
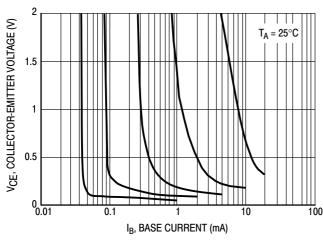




Figure 7. DC Current Gain



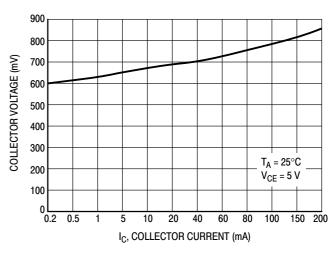
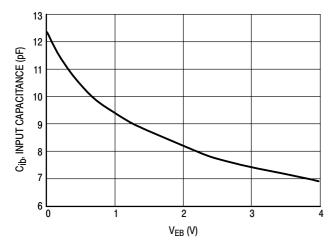




Figure 8. Collector Saturation Region

Figure 9. On Voltage



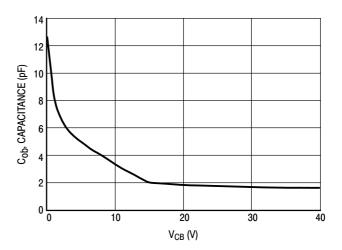


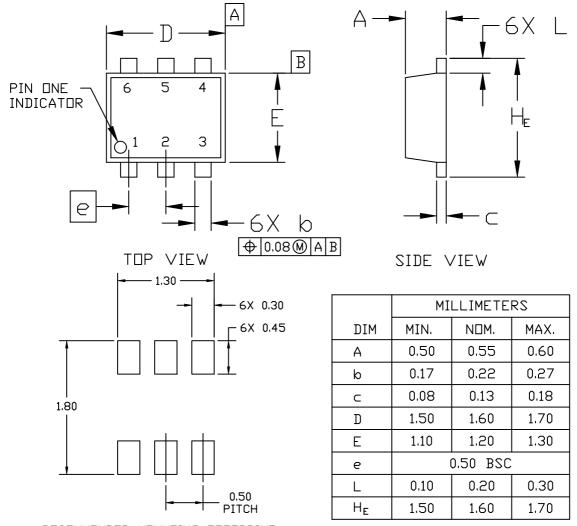

Figure 10. Capacitance

Figure 11. Capacitance

## **MECHANICAL CASE OUTLINE**

**PACKAGE DIMENSIONS** 






SOT-563, 6 LEAD CASE 463A ISSUE H

**DATE 26 JAN 2021** 

#### NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.



## RECOMMENDED MOUNTING FOOTPRINT\*

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

| DOCUMENT NUMBER: | 98AON11126D     | Electronic versions are uncontrolled except when accessed directly from the Document Reposi<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | SOT-563, 6 LEAD |                                                                                                                                                                                | PAGE 1 OF 2 |

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

#### SOT-563, 6 LEAD

CASE 463A ISSUE H

2

1

**DATE 26 JAN 2021** 

| STYLE 1:<br>PIN 1. EMITTER 1<br>2. BASE 1<br>3. COLLECTOR 2<br>4. EMITTER 2<br>5. BASE 2<br>6. COLLECTOR 1 | STYLE 2:<br>PIN 1. EMITTER 1<br>2. EMITTER 2<br>3. BASE 2<br>4. COLLECTOR 2<br>5. BASE 1<br>6. COLLECTOR 1 | STYLE 3: PIN 1. CATHODE 1 2. CATHODE 1 3. ANODE/ANODE 4. CATHODE 2 5. CATHODE 2 6. ANODE/ANODE   |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| STYLE 4: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR                        | STYLE 5: PIN 1. CATHODE 2. CATHODE 3. ANODE 4. ANODE 5. CATHODE 6. CATHODE                                 | STYLE 61 PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE                     |
| STYLE 7: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. ANODE 6. CATHODE                                 | STYLE 8:<br>PIN 1. DRAIN<br>2. DRAIN<br>3. GATE<br>4. SUURCE<br>5. DRAIN<br>6. DRAIN                       | STYLE 9:<br>PIN 1. SDURCE 1<br>2. GATE 1<br>3. DRAIN 2<br>4. SDURCE 2<br>5. GATE 2<br>6. DRAIN 1 |
| STYLE 10:<br>PIN 1. CATHODE 1<br>2. N/C<br>3. CATHODE 2<br>4. ANODE 2<br>5. N/C<br>6. ANODE 1              | STYLE 11: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2                  |                                                                                                  |

## GENERIC MARKING DIAGRAM\*



XX = Specific Device Code
M = Month Code
Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON11126D     | Electronic versions are uncontrolled except when accessed directly from the Document Reposito<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | SOT-563, 6 LEAD |                                                                                                                                                                                  | PAGE 2 OF 2 |

ON Semiconductor and (ii) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - Pre-Biased category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

RN1607(TE85L,F) DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TKAT146 DTC144ECA-TP DTC144VUAT106

MUN5241T1G BCR158WH6327XTSA1 NSBA114TDP6T5G NSBA143ZF3T5G NSBC114YF3T5G NSBC123TF3T5G SMUN5235T1G

SMUN5330DW1T1G SSVMUN5312DW1T2G RN1303(TE85L,F) RN4605(TE85L,F) TTEPROTOTYPE79 DDTC114EUAQ-7-F

EMH15T2R SMUN2214T3G NSBC114TF3T5G NSBC143ZPDP6T5G NSVMUN5113DW1T3G SMUN5230DW1T1G SMUN5133T1G

SMUN2214T1G DTC114EUA-TP NSBA144EF3T5G NSVDTA114EET1G 2SC2223-T1B-A 2SC3912-TB-E SMUN5237DW1T1G

SMUN5213DW1T1G SMUN5114DW1T1G SMUN2111T1G NSVDTC144EM3T5G DTC124ECA-TP DTC123TM3T5G DTA114ECA-TP

DTA113EM3T5G DCX115EK-7-F DTC113EM3T5G NSVMUN5135DW1T1G NSVDTC143ZM3T5G SMUN5335DW1T2G

SMUN5216DW1T1G NSVMUN5312DW1T2G NSVMUN5215DW1T1G