EMG2DXV5, EMG5DXV5

Dual Bias Resistor
 Transistors
 NPN Silicon Surface Mount Transistors with Monolithic Bias Resistor Network

This new series of digital transistors is designed to replace a single device and its external resistor bias network. The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space. The device is housed in the SOT-553 package which is designed for low power surface mount applications.

Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- Moisture Sensitivity Level: 1
- Available in $8 \mathrm{~mm}, 7$ inch Tape and Reel
- Lead-Free Solder Plating
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	50	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	50	Vdc
Collector Current	I_{C}	100	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	230 (Note 1) 338 (Note 2) 1.8 (Note 1) 2.7 (Note 2)	$\begin{aligned} & \hline \mathrm{mW} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
Thermal Resistance -Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	$\begin{aligned} & 540 \text { (Note 1) } \\ & 370 \text { (Note 2) } \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance -Junction-to-Lead	$\mathrm{R}_{\text {өJL }}$	$\begin{aligned} & 264 \text { (Note 1) } \\ & 287 \text { (Note 2) } \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\mathrm{stg}}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. FR-4 @ Minimum Pad
2. FR-4 @ 1.0×1.0 inch Pad

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

NPN SILICON BIAS RESISTOR TRANSISTORS

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

DEVICE MARKING AND RESISTOR VALUES

Device	Package	Marking	R1 (K)	R2 (K)
EMG2DXV5	SOT-553	UP	47	47
EMG5DXV5	SOT-553	UF	10	47

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (Q1 \& Q2)					
Collector-Base Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$)	$\mathrm{I}_{\mathrm{CBO}}$	-	-	100	nAdc
Collector-Emitter Cutoff Current ($\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{I}_{\text {CEO }}$	-	-	500	nAdc
Emitter-Base Cutoff Current ($\mathrm{V}_{\mathrm{EB}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$) EMG2DXV5 EMG5DXV5	IEBO	-	-	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	mAdc
Collector-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$)	$V_{\text {(BR) } \mathrm{CBO}}$	50	-	-	Vdc
Collector-Emitter Breakdown Voltage (Note 3) $\left(\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right.$)	$V_{\text {(BR)CEO }}$	50	-	-	Vdc

ON CHARACTERISTICS (Q1 \& Q2) (Note 3)

DC Current Gain (VCE $\left.=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}\right) \quad \begin{aligned} & \text { EMG2DXV5 } \\ & \text { EMG5DXV5 }\end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \end{aligned}$	-	
Collector-Emitter Saturation Voltage ($\mathrm{IC}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.3 \mathrm{~mA}$)	$\mathrm{V}_{\text {CE(sat) }}$	-	-	0.25	Vdc
Output Voltage (on) $\begin{array}{ll}\left(V_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=3.5 \mathrm{~V}, R_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right) & \text { EMG2DXV5 } \\ \left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.5 \mathrm{~V}, R_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right) & \text { EMG5DXV5 }\end{array}$	VoL	-	-	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	Vdc
Output Voltage (off) ($\left.\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right)$	V_{OH}	4.9	-	-	Vdc
$\begin{array}{ll}\text { Input Resistor } & \text { EMG2DXV5 } \\ & \text { EMG5DXV5 }\end{array}$	R_{1}	$\begin{gathered} 32.9 \\ 7.0 \end{gathered}$	$\begin{aligned} & 47 \\ & 10 \end{aligned}$	$\begin{gathered} 61.1 \\ 13 \end{gathered}$	k Ω
$\begin{array}{ll}\text { Resistor Ratio } & \text { EMG2DXV5 } \\ \\ \text { EMG5DXV5 }\end{array}$	$\mathrm{R}_{1} / \mathrm{R}_{2}$	$\begin{gathered} 0.8 \\ 0.17 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 0.21 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 0.25 \end{aligned}$	

3. Pulse Test: Pulse Width < $300 \mu \mathrm{~s}$, Duty Cycle < 2.0\%

Figure 1. Derating Curve

EMG2DXV5, EMG5DXV5

TYPICAL ELECTRICAL CHARACTERISTICS — EMG2DXV5

Figure 2. $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ versus I_{C}

Figure 4. Output Capacitance

Figure 3. DC Current Gain

Figure 5. Output Current versus Input Voltage

Figure 6. Input Voltage versus Output Current

EMG2DXV5, EMG5DXV5

TYPICAL ELECTRICAL CHARACTERISTICS - EMG5DXV5

Figure 7. $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ versus I_{C}

Figure 9. Output Capacitance

Figure 8. DC Current Gain

Figure 10. Output Current versus Input Voltage

Figure 11. Input Voltage versus Output Current

EMG2DXV5, EMG5DXV5

TYPICAL APPLICATIONS FOR NPN BRTS

Figure 12. Level Shifter: Connects 12 or 24 Volt Circuits to Logic

Figure 13. Open Collector Inverter: Inverts the Input Signal

EMG2DXV5, EMG5DXV5

DEVICE ORDERING INFORMATION

Device	Package	Shipping †
EMG2DXV5T1G	SOT-553 (Pb-Free)	$4000 /$ Tape \& Reel
EMG2DXV5T5G	SOT-553 (Pb-Free)	$8000 /$ Tape \& Reel
EMG5DXV5T1G	SOT-553 (Pb-Free)	$4000 /$ Tape \& Reel
EMG5DXV5T5G	SOT-553 (Pb-Free)	$8000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SCALE 4:1

SOT-553, 5 LEAD
 CASE 463B
 ISSUE C

DATE 20 MAR 2013

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.50	0.55	0.60	0.020	0.022	0.024	
b	0.17	0.22	0.27	0.007	0.009	0.011	
c	0.08	0.13	0.18	0.003	0.005	0.007	
D	1.55	1.60	1.65	0.061	0.063	0.065	
E	1.15	1.20	1.25	0.045	0.047	0.049	
e	0.50 BSC				0.020 BSC		
L	0.10	0.20	0.30	0.004	0.008	0.012	
HE	1.55	1.60	1.65	0.061	0.063	0.065	

GENERIC MARKING DIAGRAM*

XX = Specific Device Code
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, "G" or microdot " $\stackrel{\mathrm{P}}{ }$ ", may or may not be present.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLE 1:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR

STYLE 6:
PIN 1. EMITTER 2 2. BASE 2
3. EMITTER 1
4. COLLECTOR 1
5. COLLECTOR 2/BASE 1

STYLE 2:

PIN 1. CATHODE
2. COMMON ANODE
2. COMMON A
3. CATHODE 2
4. CATHODE 3
5. CATHODE 4

STYLE 7:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR

STYLE 3:
PIN 1. ANODE 1
2. N / C
3. ANODE 2
4. CATHODE 2
5. CATHODE 1

STYLE 8:
PIN 1. CATHODE
2. COLLECTOR
. N/C
4. BASE
5. EMITTER

STYLE 4:
PIN 1. SOURCE 1
2. DRAIN $1 / 2$
3. SOURCE 1
4. GATE 1
5. GATE 2

STYLE 9:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. ANODE
5. ANODE

STYLE 5:
PIN 1. ANODE
2. EMITTER
2. EMITTER
3. BASE 4. COLLECTOR
5. CATHODE

DOCUMENT NUMBER:	98AON11127D
STATUS:	ON SEMICONDUCTOR STANDARD
NEW STANDARD:	
DESCRIPTION:	SOT-553, 5 LEAD

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

| ON Semiconductor | | DOCUMENT NUMBER:
 98AON1127D |
| :---: | :--- | :--- | :---: |
| | PAGE 2 OF 2 | |

[^0]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - Pre-Biased category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
RN1607(TE85L,F) DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TKAT146 DTC144ECA-TP DTC144VUAT106 MUN5241T1G BCR158WH6327XTSA1 NSBA114TDP6T5G NSBA143ZF3T5G NSBC114YF3T5G NSBC123TF3T5G SMUN5235T1G SMUN5330DW1T1G SSVMUN5312DW1T2G RN1303(TE85L,F) RN4605(TE85L,F) TTEPROTOTYPE79 DDTC114EUAQ-7-F EMH15T2R SMUN2214T3G NSBC114TF3T5G NSBC143ZPDP6T5G NSVMUN5113DW1T3G SMUN5230DW1T1G SMUN5133T1G SMUN2214T1G DTC114EUA-TP NSBA144EF3T5G NSVDTA114EET1G 2SC2223-T1B-A 2SC3912-TB-E SMUN5237DW1T1G SMUN5213DW1T1G SMUN5114DW1T1G SMUN2111T1G NSVDTC144EM3T5G DTC124ECA-TP DTC123TM3T5G DTA114ECA-TP DTA113EM3T5G DCX115EK-7-F DTC113EM3T5G NSVMUN5135DW1T1G NSVDTC143ZM3T5G SMUN5335DW1T2G SMUN5216DW1T1G NSVMUN5312DW1T2G NSVMUN5215DW1T1G

[^0]: ON Semiconductor and (ON) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of tis products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

