EMI4184

Common Mode Filter with ESD Protection

Functional Description

The EMI4184 is an integrated common mode filter providing both ESD protection and EMI filtering for high speed digital serial interfaces such as HDMI or MIPI D-PHY.

The EMI4184 provides protection for two differential data line pairs in a small RoHS-compliant UDFN20 package.

Features

- Highly Integrated Common Mode Filter (CMF) with ESD Protection provides protection and EMI reduction for systems using High Speed Serial Data Lines with cost and space savings over discrete solutions
- Large Differential Mode Bandwidth with Cutoff Frequency $>2 \mathrm{GHz}$
- High Common Mode Stop Band Attenuation: $>25 \mathrm{~dB}$ at 700 MHz , $>30 \mathrm{~dB}$ at 800 MHz
- Provides ESD Protection to IEC61000-4-2 Level 4, $\pm 15 \mathrm{kV}$ Contact Discharge
- Low Channel Input Capacitance Provides Superior Impedance Matching Performance
- Low Profile Package with Small Footprint in UDFN20 $2 \times 5 \mathrm{~mm}$ $\mathrm{Pb}-$ Free Package
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- HDMI/DVI Display in Mobile Phones
- MIPI D-PHY (CSI-2, DSI, etc) in Mobile Phones and Digital Still Cameras

Figure 1. EMI4184 Electrical Schematic

ON Semiconductor ${ }^{\text {® }}$
http://onsemi.com

UDFN2O
CASE 517CL

> U4 $=$ Specific Device Code
> M $=$ Date Code
> - \quad Pb-Free Package
(*Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping †
EMI4184MUTAG	UDFN20 (Pb-Free)	3000/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

EMI4184

PIN FUNCTION DESCRIPTION

Pin Name	Pin No.	Type	
In_1+	1	I/O	Description
In_1-	2	CMF Channel 1/ + to Connector	
Out_1+	20	CMF Channel 1- to Connector	
Out_1-	19	I/O	CMF Channel 1+ to ASIC
In_2+	4	I/O	CMF Channel 1- to ASIC Channel 2+ to Connector
In_2-	5	I/O	CMF Channel 2- to Connector
Out_2+	17	I/O	CMF Channel 2+ to ASIC
Out_2-	16	I/O	CMF Channel 2- to ASIC
In_3+	6	I/O	CMF Channel 3+ to Connector
In_3-	7	I/O	CMF Channel 3- to Connector
Out_3+	15	I/O	CMF Channel 3+ to ASIC
Out_3-	14	I/O	CMF Channel 3- to ASIC
In_4+	9	I/O	CMF Channel 4+ to Connector
In_4-	10	I/O	CMF Channel 4- to Connector
Out_4+	12	I/O	CMF Channel 4+ to ASIC
Out_4-	11	I/O	CMF Channel 4- to ASIC
GND1	3,18	GND	Ground
GND2	8,13	GND	Ground

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameter	Symbol	Value	Unit
Operating Temperature Range	$\mathrm{T}_{\text {OP }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
ESD Discharge IEC61000-4-2 Contact Discharge	$\mathrm{V}_{\text {PP }}$	± 15	kV
Maximum Lead Temperature for Soldering Purposes (1/8" from Case for 10 seconds)	T_{L}	260	${ }^{\circ} \mathrm{C}$
DC Current per Line	I LINE	100	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
ILEAK	Channel Leakage Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
V_{F}	Channel Negative Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	0.1		1.5	V
$\mathrm{C}_{\text {IN }}$	Channel Input Capacitance to Ground (Pins 1, 2, 4, 5 to Pins 3, 8 and 6, 7, 9,10 to Pins 8, 13)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { At } 1 \mathrm{MHz}, \mathrm{GND}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=1.65 \mathrm{~V} \end{aligned}$		0.8	1.3	pF
R_{CH}	Channel Resistance (Pins 1-20, 2-19, 4-17, 5-16, 6-15, 7-14, 9-12, 10-11)			8.0		Ω
$\mathrm{f}_{3 \mathrm{~dB}}$	Differential Mode Cut-off Frequency	50Ω Source and Load Termination		2.0		GHz
$\mathrm{F}_{\text {atten }}$	Common Mode Stop Band Attenuation	@ 800 MHz		30		dB
$\mathrm{V}_{\text {ESD }}$	ESD Protection - Peak Discharge Voltage at any channel input, in system: Contact discharge per IEC61000-4-2 standard	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Notes 1 and 2) Pins 1, 2, 4, 5, 6, 7, 9, 10	± 15			kV
V_{CL}	TLP Clamping Voltage (See Figure 12)	Forward $\mathrm{I}_{\mathrm{PP}}=8 \mathrm{~A}$ Forward $\mathrm{I}_{\mathrm{PP}}=16 \mathrm{~A}$ Forward $\mathrm{I}_{\mathrm{PP}}=-8 \mathrm{~A}$ Forward $I_{P P}=-16 \mathrm{~A}$		$\begin{gathered} 12 \\ 18 \\ -6 \\ -12 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{R}_{\text {DYN }}$	Dynamic Resistance Positive Transients Negative Transients	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{PP}}=1 \mathrm{~A}, \mathrm{t}_{\mathrm{P}}=8 / 20 \mu \mathrm{~s}$ Any I/O pin to Ground; Notes 1 and 3		$\begin{gathered} 1.36 \\ 0.6 \end{gathered}$		
$\mathrm{V}_{\text {RWM }}$	Reverse Working Voltage	(Note 3)			5.0	V
V_{BR}	Breakdown Voltage	$\mathrm{I}_{\mathrm{T}}=1 \mathrm{~mA}$; (Note 4)	5.6		9.0	V

1. Standard IEC61000-4-2 with $C_{\text {Discharge }}=150 \mathrm{pF}, \mathrm{R}_{\text {Discharge }}=330$, GND grounded.
2. These measurements performed with no external capacitor.
3. TVS devices are normally selected according to the working peak reverse voltage (V_{RW}), which should be equal to or greater than the DC or continuous peak operating voltage level
4. V_{BR} is measured at pulse test current I_{T}.

Figure 2. Differential Mode Attenuation vs. Frequency (Zdiff = 100Ω)

Figure 4. Differential Return Loss vs. Frequency (Zdiff=100 Ω)

Figure 3. Common Mode Attenuation vs. Frequency (Zcomm = 50Ω)

Figure 5. Differential Inter-Lane Cross-Coupling

Figure 6. Common Mode Inter-Lane Cross-Coupling

EMI4184

Figure 7. MIPI D-PHY LP Mode Test Setup

Figure 8. EMI4184 MIPI D-PHY LP Mode Measured Results

Figure 9. EMI4184 Eye Diagram Test Setup

Figure 10. EMI4184 Measured Eye Diagram @ 3.4Gbps (EVB through on left, EVB with EMI4184 on right)

EMI4184

TRANSMISSION LINE PULSE (TLP) MEASUREMENTS

Transmission Line Pulse (TLP) provides current versus voltage (I-V) curves in which each data point is obtained from a 100 ns long rectangular pulse from a charged transmission line. A simplified schematic of a typical TLP system is shown in Figure 11. TLP I-V curves of ESD protection devices accurately demonstrate the product's ESD capability because the 10 s of amps current levels and under 100 ns time scale match those of an ESD event. This is illustrated in Figure 12 where an 8 kV IEC61000-4-2 current waveform is compared with TLP current pulses at 8 and 16 A . A TLP curve shows the voltage at which the device turns on as well as how well the device clamps voltage over a range of current levels. Typical TLP I-V curves for the EMI4184 are shown in Figure 13.

Figure 11. Simplified Schematic of a Typical TLP System

Figure 12. Comparison Between 8 kV IEC61000-4-2 and 8 A and 16 A TLP Waveforms

Figure 13. Positive and Negative TLP Waveforms

ESD VOLTAGE CLAMPING

For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000-4-2 waveform. Since the IEC61000-4-2 was written as a pass/fail spec for larger systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level. ON Semiconductor has developed a way to examine the entire voltage waveform across the ESD protection diode over the time domain of an ESD pulse in the form of an oscilloscope screenshot, which can be found on the datasheets for all ESD protection diodes. For more information on how ON Semiconductor creates these screenshots and how to interpret them please refer to On Semiconductor Application Notes AND8307/D and AND8308/D.

IEC61000-4-2 Spec.

Level	Toltage (kV)	First Peak Current (A)	Current at $\mathbf{3 0}$ ns (A)	Current at $\mathbf{6 0}$ ns (A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8

Figure 14. Diagram of ESD Test Setup

Figure 15. $8 \times 20 \mu \mathrm{~s}$ Pulse Waveform

EMI4184

Figure 16. ESD Clamping Voltage $\mathbf{+ 8}$ kV per IEC6100-4-2 (external to internal pin)

Figure 17. ESD Clamping Voltage -8 kV per IEC6100-4-2 (external to internal pin)

DATE 31 JUL 2012

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " $\stackrel{\mathrm{r}}{ }$ ", may or may not be present.

RECOMMENDED MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98AON82587E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	UDFN20 5X2, 0.5P		PAGE 1 OF 1

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ESD Suppressors / TVS Diodes category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
60KS200C D12V0H1U2WS-7 D18V0L1B2LP-7B 82356050220 D5V0M5U6V-7 NTE4902 P4KE27CA P6KE11CA P6KE39CA-TP P6KE8.2A SA110CA SA60CA SA64CA SMBJ12CATR SMBJ8.0A SMLJ30CA-TP ESD101-B1-02ELS E6327 ESD112-B1-02EL E6327 ESD119B1W01005E6327XTSA1 ESD5V0J4-TP ESD5V0L1B02VH6327XTSA1 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF 3.0SMCJ33CA-F 3.0SMCJ36A-F HSPC16701B02TP D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DESD5V0U1BL-7B DRTR5V0U4SL-7 SCM1293A-04SO ESD200-B1-CSP0201 E6327 ESD203-B1-02EL E6327 SM12-7 SMF8.0A-TP SMLJ45CA-TP CEN955 W/DATA 8235012056082356240030 VESD12A1A-HD1-GS08 CPDUR5V0R-HF CPDUR24V-HF CPDQC5V0U-HF CPDQC5V0USP-HF CPDQC5V0-HF D1213A-01LP4-7B D1213A-02WL-7 ESDLIN1524BJ-HQ 5KP100A

