EMI8141, EMI8142, EMI8143

Common Mode Filter with ESD Protection

Functional Description

The EMI814x is a family of Common Mode Filters (CMF) with integrated ESD protection, a first in the industry. Differential signaling I/Os can now have both common mode filtering and ESD protection in one package. The EMI814x protects against ESD pulses up to $\pm 15 \mathrm{kV}$ contact per the IEC61000-4-2 standard.

The EMI814x is well-suited for protecting systems using high-speed differential ports such as USB 3.0, MIPI D-PHY; corresponding ports in removable storage, and other applications where ESD protection are required in a small footprint package.

The EMI814x is available in a RoHS-compliant, XDFN6 for 1 Differential Pair, XDFN-10 for 2 Differential Pair and XDFN-16 package for 3 Differential Pair.

Features

- Total Insertion Loss $\mathrm{DM}_{\text {LOSS }}<2.5 \mathrm{~dB}$ at 2.5 GHz
- Large Differential Mode Cutoff Frequency f $3 \mathrm{~dB}>5 \mathrm{GHz}$
- High Common Mode Stop Band Attenuation:
$>10 \mathrm{~dB}$ at $500 \mathrm{MHz}, 15 \mathrm{~dB}$ at 700 MHz
- Low Channel Resistance 6.0Ω
- Provides ESD Protection to IEC61000-4-2 Level 4, $\pm 15 \mathrm{kV}$ Contact
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- USB 3.0
- MHL 2.0
- μ SD Card
- eSATA
- HDMI/DVI Display in Mobile Phones
- MIPI D-PHY (CSI-2, DSI, etc) in Mobile Phones and Digital Still Cameras

Figure 1. EMI8141 Electrical Schematic

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping †
EMI8141MUTAG	XDFN6	$3000 /$ Tape \& Reel
EMI8142MUTAG	XDFN10	$3000 /$ Tape \& Reel
EMI8143MUTAG	XDFN16	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PIN FUNCTION DESCRIPTION

Pin Name	Device Pin			Type	
	EMI8141	EMI8142	EMI8143		
	1	1	1	I/O	CMF Channel 1+ to Connector (External)
In_1-	2	2	2	I/O	CMF Channel 1- to Connector (External)
Out_1+	6	10	16	I/O	CMF Channel 1+ to ASIC (Internal)
Out_1-	5	9	15	I/O	CMF Channel 1- to ASIC (Internal)
In_2+	NA	4	4	I/O	CMF Channel 2+ to Connector (External)
In_2-	NA	5	5	I/O	CMF Channel 2- to Connector (External)
Out_2+	NA	7	13	I/O	CMF Channel 2+ to ASIC (Internal)
Out_2-	NA	6	12	I/O	CMF Channel 2- to ASIC (Internal)
In_3+	NA	NA	7	I/O	CMF Channel 3+ to Connector (External)
In_3-	NA	NA	8	I/O	CMF Channel 3- to Connector (External)
Out_3+	NA	NA	10	I/O	CMF Channel 3+ to ASIC (Internal)
Out_3-	NA	NA	9	I/O	CMF Channel 3- to ASIC (Internal)
VN	3,4	3,8	$3,6,14,11$	GND	Ground

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameter	Symbol	Value	Unit
Operating Temperature Range	$\mathrm{T}_{\text {OP }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Maximum Lead Temperature for Soldering Purposes $(1 / 8 "$ from Case for 10 seconds)	T_{L}	260	${ }^{\circ} \mathrm{C}$
DC Current per Line	$\mathrm{I}_{\text {LINE }}$	100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

EMI8141, EMI8142, EMI8143

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {RWM }}$	Reverse Working Voltage	(Note 3)		3.3		V
V_{BR}	Breakdown Voltage	$\mathrm{I}_{\mathrm{T}}=1 \mathrm{~mA}$; (Note 4)	4.0		9.0	V
ILEAK	Channel Leakage Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
R_{CH}	Channel Resistance (Pins 1-6, 2-5) - EMI8141 (Pins 1-10, 2-9, 4-7 and 5-6) - EMI8142 (Pins 1-16, 2-15, 4-13, 5-12, 7-10 and 8-9) - EMI8143			6.0		Ω
DMLOSS	Differential Mode Insertion Loss	@ 2.5 GHz		2.5		dB
$\mathrm{f}_{3 \mathrm{~dB}}$	Differential Mode Cut-off Frequency	50Ω Source and Load		5.0		GHz
$\mathrm{F}_{\text {atten }}$	Common Mode Stop Band Attenuation	@ 700 MHz		15		dB
$\mathrm{V}_{\text {ESD }}$	In-system ESD Withstand Voltage a) Contact discharge per IEC 61000-4-2 standard, Level 4 (External Pins) b) Contact discharge per IEC 61000-4-2 standard, Level 1 (Internal Pins)	(Notes 1 and 2)	$\begin{gathered} \pm 15 \\ \pm 2 \end{gathered}$			kV
V_{CL}	TLP Clamping Voltage	Forward $\mathrm{I}_{\mathrm{PP}}=8 \mathrm{~A}$ Forward $\mathrm{I}_{\mathrm{PP}}=16 \mathrm{~A}$ Forward IPP = -8 A Forward $\mathrm{I}_{\mathrm{PP}}=-16 \mathrm{~A}$		$\begin{aligned} & \hline 7.26 \\ & 11.8 \\ & -3.5 \\ & -6.7 \end{aligned}$		V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Standard IEC61000-4-2 with $\mathrm{C}_{\text {Discharge }}=150 \mathrm{pF}, \mathrm{R}_{\text {Discharge }}=330$, GND grounded.
2. These measurements performed with no external capacitor.
3. TVS devices are normally selected according to the working peak reverse voltage ($\mathrm{V}_{\mathrm{RWM}}$), which should be equal to or greater than the DC or continuous peak operating voltage level.
4. $V_{B R}$ is measured at pulse test current I_{T}.

EMI8141, EMI8142, EMI8143

TYPICAL CHARACTERISTICS

Figure 2. Typical Differential Mode Attenuation vs. Frequency

Figure 3. Typical Common Mode Attenuation vs. Frequency

Interface	Data Rate (Gb/s)	Fundamental Frequency (GHz)	ESD814x Insertion Loss (dB)
USB 3.0	5	$2.5(\mathrm{~m} 1)$	$\mathrm{m} 1=2.13$

EMI8141, EMI8142, EMI8143

TRANSMISSION LINE PULSE (TLP) MEASUREMENTS

Transmission Line Pulse (TLP) provides current versus voltage (I-V) curves in which each data point is obtained from a 100 ns long rectangular pulse from a charged transmission line. A simplified schematic of a typical TLP system is shown in Figure 4. TLP I-V curves of ESD protection devices accurately demonstrate the product's ESD capability because the 10 s of amps current levels and under 100 ns time scale match those of an ESD event. This is illustrated in Figure 5 where an 8 kV IEC61000-4-2 current waveform is compared with TLP current pulses at 8 A and 16 A . A TLP curve shows the voltage at which the device turns on as well as how well the device clamps voltage over a range of current levels. Typical TLP I-V curves for the EMI814x are shown in Figure 4.

Figure 4. Simplified Schematic of a Typical TLP System

Figure 5. Comparison Between 8 kV IEC61000-4-2 and 8 A and 16 A TLP Waveforms

Figure 6. Positive and Negative TLP Waveforms

EMI8141, EMI8142, EMI8143

Figure 7. Eye Diagram Test Setup for 5Gbps Data Rate

Figure 8. Eye Diagram 5Gbps with and without EMI814x

	Eye Height (mVppd)	Rise Time (ps)	Fall Time (ps)	Jrms (ps)	Jpp (ps)
Reference (No Device)-Left Figure	724	30.4	29.6	1.997	9.6
EMI814x Right Figure	405	60	60.8	3.484	16

SCALE 4:1

XDFN10 2.2x1.35, 0.4P
CASE 711AU
ISSUE B
DATE 17 JUN 2014

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSIONS b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.30 MM FROM THE TERMINAL TIP.

	MILLIMETERS	
DIM	MIN	MAX
A	0.40	0.50
A1	0.00	0.05
A3	0.15 REF	
b	0.15	
D	0.25	
E	2.20 BSC	
E	1.35 BSC	
e	0.40 BSC	
L	0.40	0.60
L1	---	0.15

GENERIC
MARKING DIAGRAM*

XX = Specific Device Code
M = Date Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " P ", may or may not be present.

DIMENSIONS: MILLIMETERS

| DOCUMENT NUMBER: | 98AON83517F | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | XDFN10 2.2X1.35, 0.4P | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
XDFN6 1.40x1.35, 0.4P
CASE 711AV
ISSUE A

DATE 04 JUN 2014

L1

DETAIL A

ALTERNATE TERMINAL CONSTRUCTIONS

DETAIL B ALTERNATE construction

NOTES:
DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSIONS b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM TERMINAL TIP.

	MILLIMETERS		
DIM	MIN	MAX	
A	0.40	0.50	
A1	0.00	0.05	
A3	0.15		
REF			
b	0.15		
D	0.25		
E	1.35		
BSC			
e	0.40		
L	0.40	0.60	
L1	---	0.15	

GENERIC MARKING DIAGRAM*

XX = Specific Device Code
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " $\boldsymbol{\wedge}$ ", may or may not be present.

RECOMMENDED MOUNTING FOOTPRINT

| DOCUMENT NUMBER: | 98AON83554F | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | XDFN6 1.40X1.35, 0.4P | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

XDFN16 3.5x1.35, 0.4P
CASE 711AW
ISSUE A
DATE 17 JUN 2014
SCALE 4:1

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON83555F | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | XDFN16 3.5X1.35, 0.4P | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ESD Suppressors / TVS Diodes category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
60KS200C D12V0H1U2WS-7 D18V0L1B2LP-7B 82356050220 D5V0M5U6V-7 NTE4902 P4KE27CA P6KE11CA P6KE39CA-TP P6KE8.2A SA110CA SA60CA SA64CA SMBJ12CATR SMBJ8.0A SMLJ30CA-TP ESD101-B1-02ELS E6327 ESD112-B1-02EL E6327 ESD119B1W01005E6327XTSA1 ESD5V0J4-TP ESD5V0L1B02VH6327XTSA1 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF 3.0SMCJ33CA-F 3.0SMCJ36A-F HSPC16701B02TP D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DESD5V0U1BL-7B DRTR5V0U4SL-7 SCM1293A-04SO ESD200-B1-CSP0201 E6327 ESD203-B1-02EL E6327 SM12-7 SMF8.0A-TP SMLJ45CA-TP CEN955 W/DATA 8235012056082356240030 VESD12A1A-HD1-GS08 CPDUR5V0R-HF CPDUR24V-HF CPDQC5V0U-HF CPDQC5V0USP-HF CPDQC5V0-HF D1213A-01LP4-7B D1213A-02WL-7 ESDLIN1524BJ-HQ 5KP100A

