## EMI9406

# L-C LCD and Camera EMI Array with ESD Protection 

## Functional Description

The EMI9406 is an inductor-based (L-C) EMI filter array with ESD protection, which integrates six filters in a uDFN package with 0.40 mm pitch. Each EMI filter channel of the EMI9406 is implemented with the component value of 1.8 pF $35 \mathrm{nH}-4.7 \mathrm{pF}-35 \mathrm{nH}-6 \mathrm{pF}$. The cut-off frequency at -3 dB attenuation is 300 MHz and can be used in applications where the data rates are as high as 160 Mbps , while providing greater than -35 dB attenuation over the 800 MHz to 2.7 GHz frequency range. The parts include ESD diodes on every I/O pin and provide a high level of protection against electrostatic discharge (ESD). The ESD protection diodes connected to the external filter ports are designed and characterized to safely dissipate ESD strikes of $\pm 14 \mathrm{kV}$, which is beyond the maximum requirement of the IEC61000-4-2 international standard.

This device is particularly well suited for wireless handsets, mobile LCD modules and PDAs because of its small package format and easy-to-use pin assignments. In particular, the EMI9406 is ideal for EMI filtering and protecting data and control lines for the LCD display and camera interface in mobile handsets.

The EMI9404 is housed in space saving, low profile, 0.40 mm pitch UDFN packages in a RoHS compliant, $\mathrm{Pb}-$ Free format.

## Features

- Six Channels of EMI Filtering with Integrated ESD Protection
- Pi-Style EMI Filters in a Capacitor-Inductor-Capacitor (C-L-C) Network
- $\pm 14$ kV ESD Protection (IEC 61000-4-2 Level 4, contact discharge) at External Pin
- Greater than -35 dB Attenuation (typical) at 1 GHz
- UDFN Pb-Free Package with 0.40 mm Lead Pitch: 6-ch. = 12-Lead UDFN
- UDFN Pb-Free Package with 0.40 mm Lead Pitch: 12-lead: $2.50 \mathrm{~mm} \times 1.35 \mathrm{~mm}$
- Increased Robustness Against Vertical Impacts During Manufacturing Process
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant


## Applications

- LCD and Camera Data Lines in Mobile Handsets
- I/O Port Protection for Mobile Handsets, Notebook Computers, PDAs, etc.
- EMI Filtering for Data Ports in Cell Phones, PDAs or Notebook Computer



Figure 1. Electrical Schematic

Table 1. PIN DESCRIPTIONS

| Pin \# | Name | Description |
| :---: | :--- | :--- |
| 1 | FILTER1 | Filter + ESD Channel 1 (Internal) |
| 2 | FILTER2 | Filter + ESD Channel 2 (Internal) |
| 3 | FILTER3 | Filter + ESD Channel 3 (Internal) |
| 4 | FILTER4 | Filter + ESD Channel 4 (Internal) |
| 5 | FILTER5 | Filter + ESD Channel 5 (Internal) |
| 6 | FILTER6 | Filter + ESD Channel 6 (Internal) |
| 7 | FILTER6 | Filter + ESD Channel 6 (External) |
| 8 | FILTER5 | Filter + ESD Channel 5 (External) |
| 9 | FILTER4 | Filter + ESD Channel 4 (External) |
| 10 | FILTER3 | Filter + ESD Channel 3 (External) |
| 11 | FILTER2 | Filter + ESD Channel 2 (External) |
| 12 | FILTER1 | Filter + ESD Channel 1 (External) |
| GND PAD | GND | Device Ground |

## SPECIFICATIONS

## MAXIMUM RATINGS

| Parameter | Value | Unit |
| :--- | :---: | :---: |
| Storage Temperature Range | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| Current per Inductor | 15 | mA |
| DC Package Power Rating | 500 | mW |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

## STANDARD OPERATING CONDITIONS

| Parameter | Rating | Unit |
| :--- | :---: | :---: |
| Operating Temperature Range | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |

ELECTRICAL OPERATING CHARACTERISTICS (Note 1)

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{L}_{\text {TOT }}$ | Total Channel Inductance |  |  | 70 |  | nH |
| $\mathrm{R}_{\text {TOT }}$ | Total Channel DC Resistance |  |  | 45 |  | $\Omega$ |
| Cтot_ov | Total Channel Capacitance, 0 V bias | $0 \mathrm{~V} \mathrm{dc} ; 1 \mathrm{MHz}, 30 \mathrm{mV} \mathrm{rms}$ |  | 17.5 | 24 | pF |
| CTot_2.5V | Total Channel Capacitance, 2.5 V bias | $2.5 \mathrm{~V} \mathrm{dc} ; 1 \mathrm{MHz}, 30 \mathrm{mV}$ rms |  | 11.5 |  | pF |
| Vst | Stand-off Voltage | $\mathrm{I}=10 \mu \mathrm{~A}$ | 5.5 |  |  | V |
| ILEAK | Diode Leakage Current | $\mathrm{V}_{\text {IN }}=+3.3 \mathrm{~V}$ |  | 0.1 | 0.5 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {SIG }}$ | Signal Clamp Voltage Positive Clamp Negative Clamp | $\begin{aligned} & \text { ILOAD }=10 \mathrm{~mA} \\ & \text { ILOAD }=-10 \mathrm{~mA} \end{aligned}$ | $\begin{gathered} \hline 5.6 \\ -1.5 \end{gathered}$ | $\begin{gathered} \hline 6.8 \\ -0.8 \end{gathered}$ | $\begin{gathered} \hline 9.0 \\ -0.4 \end{gathered}$ | V |
| VEsD | In-system ESD Withstand Voltage <br> a) Contact discharge per IEC 61000-4-2 <br> standard, Level 4 (External Pins) <br> b) Contact discharge per IEC 61000-4-2 <br> standard, Level 4 (Internal Pins) <br> c) Air discharge per IEC61000-4-2 <br> standard, Level 4 (External Pins) | Notes 2 and 3 | $\begin{gathered} \pm 14 \\ \pm 2 \\ \pm 16 \end{gathered}$ |  |  | kV |
| $\mathrm{V}_{\mathrm{C}}$ | Clamping Voltage TLP (Note 4) See Figures 4 through 7 | $\begin{aligned} & I_{\mathrm{PP}}=8 \mathrm{~A} \\ & I_{\mathrm{PP}}=16 \mathrm{~A} \\ & I_{\mathrm{PP}}=-8 \mathrm{~A} \\ & I_{\mathrm{PP}}=-16 \mathrm{~A} \end{aligned}$ |  | $\begin{gathered} 13.7 \\ 20 \\ -4.4 \\ -7.6 \end{gathered}$ |  | V |
| $\mathrm{fc}_{0}$ | $\begin{aligned} & \text { Cut-off frequency } \text { Zsource }=50 \Omega \text {, } \\ & \text { Z_OAD }=50 \Omega \end{aligned}$ |  |  | 345 |  | MHz |

1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.
2. ESD applied to input and output pins with respect to GND, one at a time.
3. Unused pins are left open.
4. ANSI/ESD STM5.5.1 - Electrostatic Discharge Sensitivity Testing using Transmission Line Pulse (TLP) Model. TLP conditions: $Z_{0}=50 \Omega, \mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns}, \mathrm{t}_{\mathrm{r}}=4 \mathrm{~ns}$, averaging window; $\mathrm{t}_{1}=30 \mathrm{~ns}$ to $\mathrm{t}_{2}=60 \mathrm{~ns}$.

## PERFORMANCE INFORMATION

TYPICAL FILTER PERFORMANCE
( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{DC}$ Bias $=0 \mathrm{~V}, 50 \Omega$ Environment)


Figure 2. Typical Filter Insertion Loss

TYPICAL DIODE CAPACITANCE VS. INPUT VOLTAGE


Figure 3. Filter Capacitance vs. Input Voltage (Normalized to Capacitance at 0 VDC and $25^{\circ} \mathrm{C}$ )

ORDERING INFORMATION

| Device | Pins | Marking | Package | Shipping $^{\dagger}$ |
| :---: | :---: | :---: | :---: | :---: |
| EMI9406MUTAG | 12 | 96 | UDFN12 <br> (Pb-Free) | $3000 /$ Tape \& Reel |

[^0] Specifications Brochure, BRD8011/D.


Figure 4. Positive TLP I-V Curve

## Transmission Line Pulse (TLP) Measurement

Transmission Line Pulse (TLP) provides current versus voltage ( $\mathrm{I}-\mathrm{V}$ ) curves in which each data point is obtained from a 100 ns long rectangular pulse from a charged transmission line. A simplified schematic of a typical TLP system is shown in Figure 6. TLP I-V curves of ESD protection devices accurately demonstrate the product's ESD capability because the 10 s of amps current levels and under 100 ns time scale match those of an ESD event. This is illustrated in Figure 7 where an 8 kV IEC 61000-4-2 current waveform into a short is compared with TLP current pulses at 8 A and 16 A , also into a short. A TLP I-V curve shows the voltage at which the device turns on, as well as how well the device clamps voltage over a range of current levels. Typical TLP I-V curves for the EMI9404 are shown in Figures 4 and 5 for positive and negative stress respectively. Application note AND9007/D gives more


Figure 5. Negative TLP I-V Curve
detail on TLP datasheet parameters, while application note AND9006/D provides a more complete explanation of the use of TLP for understanding protection product characteristics.


Figure 6. Simplified Schematic of a Typical TLP System


Figure 7. Comparison Between 8 kV IEC 61000-4-2 and 8 A and 16 A TLP Waveforms


SCALE 4:1

UDFN12, 2.5x1.35, 0.4P
CASE 517BD-01
ISSUE O
DATE 18 NOV 2009

SEATING
PLANE



RECOMMENDED SOLDERING FOOTPRINT*


NOTES:
DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL

AND IS MEASURED BETWEEN 0.15 AND
0.25 mm FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

| DIM | MILLIMETERS |  |
| :---: | :---: | :---: |
|  | MIN | MAX |
| A | 0.45 | 0.55 |
| A1 | 0.00 | 0.05 |
| A3 | 0.13 REF |  |
| b | 0.15 | 0.25 |
| D | 2.50 BSC |  |
| D2 | 1.90 | 2.10 |
| E | 1.35 BSC |  |
| E2 | 0.30 | 0.50 |
| e | 0.40 BSC |  |
| K | 0.15 | --- |
| L | 0.20 | 0.30 |
| L1 | --- | 0.05 |

## GENERIC MARKING DIAGRAM*



XX = Specific Device Code
M = Month Code

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking.
$\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{"}$, may or may not be present.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON47061E | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UDFN12, 2.5X1.35, 0.4P | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for EMI Filter Circuits category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
761280-1 SBSGC0500224MXB SBSPP0250104MXT SBSPP0250154MXT SBSPP0500473MXT SBSPP1000102MXT SBSPP1000153MXB SBSPP1000220MCT SBSPP1000332MXT SBSPP1000470MCT SBSPP1000471MCT SBSPP1000472MXT SNZF220DFT1G CM1442-06CP EMI8041MUTAG SBSPP0500473MXB SBSPP1000101MCT SBSPP1000220MCB SBSPP1000221MCT EMIF06-USD05F3 EMIF03-SIM03F3 EMI7112FCTAG EMI7403FCTBG EMI2180MTTBG CM1442-08CP CSPEMI204FCTAG SBSPP1000152MXT SBSGC5000473MXT SBSMC0500474MXT EMI8043MUTAG MEA2010PE360T001 NFA18SL307V1A45L 1-6609037-5 CM1690-06DE EMIF05-SK01F3 EMIF02-USB03F2 BNX022-01L BNX024H01L BNX025H01L BNX026H01L NFA21SL806X1A48L NFL18SP157X1A3D NFL21SP106X1C3D NFL21SP207X1C3D NFL21SP307X1C3D NFL21SP506X1C3D NFL21SP706X1C3D NFW31SP207X1E4L BNX022-01B BNX027H01L


[^0]:    $\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging

