ESD8101, ESD8111

ESD Protection Diodes
 Ultra Low Capacitance ESD Protection Diode for High Speed Data Line

The ESD81x1 Series ESD protection diodes are designed to protect high speed data lines from ESD. Ultra-low capacitance and low ESD clamping voltage make this device an ideal solution for protecting voltage sensitive high speed data lines.

Features

- Low Capacitance (0.20 pF Typ, I/O to GND)
- Protection for the Following IEC Standards:

IEC 61000-4-2 (Level 4)

- Low ESD Clamping Voltage
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- USB 3.0/3.1
- MHL 2.0
- eSATA

MAXIMUM RATINGS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Operating Junction Temperature Range	T_{J}	-55 to +150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Lead Solder Temperature -	T_{L}	260	${ }^{\circ} \mathrm{C}$
Maximum (10 Seconds)			
ESD8101:	ESD		
IEC 61000-4-2 Contact		± 23	kV
IEC 61000-4-2 Air		± 23	kV
ESD811:		± 30	kV
IEC 61000-4-2 Contact		± 30	kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

See Application Note AND8308/D for further description of survivability specs.

ON Semiconductor ${ }^{\text {® }}$

www.onsemi.com

MARKING
DIAGRAMS

T, F, Q = Device Code

PIN CONFIGURATION

 AND SCHEMATIC

ORDERING INFORMATION
See detailed ordering and shipping information on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter
$\mathrm{V}_{\mathrm{RWM}}$	Working Peak Voltage
I_{R}	Maximum Reverse Leakage Current @ $\mathrm{V}_{\mathrm{RWM}}$
V_{BR}	Breakdown Voltage @ I_{T}
I_{T}	Test Current
$\mathrm{V}_{\text {HOLD }}$	Holding Reverse Voltage
$\mathrm{I}_{\mathrm{HOLD}}$	Holding Reverse Current
$\mathrm{R}_{\mathrm{DYN}}$	Dynamic Resistance
I_{PP}	Maximum Peak Pulse Current
V_{C}	Clamping Voltage $@ \mathrm{I}_{\mathrm{PP}}$ $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\text {HOLD }}+\left(\right.$ l $\left._{\mathrm{PP}}{ }^{*} \mathrm{R}_{\mathrm{DYN}}\right)$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Reverse Working Voltage	$V_{\text {RWM }}$	I/O Pin to GND			3.3	V
Breakdown Voltage	$V_{B R}$	$\mathrm{I}_{\mathrm{T}}=1 \mathrm{~mA}, \mathrm{I} / \mathrm{O}$ Pin to GND	5.5	7.9	8.6	V
Reverse Leakage Current	I_{R}	$\mathrm{V}_{\mathrm{RWM}}=3.3 \mathrm{~V}$, I/O Pin to GND			1.0	$\mu \mathrm{A}$
Reverse Holding Voltage	$\mathrm{V}_{\text {HOLD }}$	I/O Pin to GND		2.1		V
Holding Reverse Current	IHOLD	I/O Pin to GND		17		mA
ESD8111 Clamping Voltage	V_{C}	$\mathrm{I}_{\mathrm{PP}}=7.1 \mathrm{~A},(8 / 20 \mu s$ pulse $)$			8.0	V
ESD8101, ESD8111 Clamping Voltage TLP (Note 1)	V_{C}			$\begin{aligned} & \hline 6.5 \\ & 10 \end{aligned}$		V
Dynamic Resistance	$\mathrm{R}_{\text {DYN }}$	I/O Pin to GND		0.46		Ω
Junction Capacitance	C_{J}	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		0.2	0.4	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. ANSI/ESD STM5.5.1 - Electrostatic Discharge Sensitivity Testing using Transmission Line Pulse (TLP) Model.

TLP conditions: $\mathrm{Z}_{0}=50 \Omega, \mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns}, \mathrm{t}_{\mathrm{r}}=4 \mathrm{~ns}$, averaging window; $\mathrm{t}_{1}=30 \mathrm{~ns}$ to $\mathrm{t}_{2}=60 \mathrm{~ns}$.

ORDERING INFORMATION

Device	Package	Shipping †
ESD8101FCT5G	DSN2 (Pb-Free)	$10,000 /$ Tape \& Reel
ESD8111FCT5G	WLCSP2 (Pb-Free)	$10,000 /$ Tape \& Reel
ESD8111PFCT5G	WLCSP2 Side wall Isolated 0201 (Pb-Free)	$10,000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ESD8101, ESD8111

TYPICAL CHARACTERISTICS

Figure 1. ESD8101 CV Characteristics

Figure 3. ESD8101 S21 Insertion Loss

Figure 5. ESD8101 Capacitance over Frequency

Figure 2. ESD8111 CV Characteristics

Figure 4. ESD8111 S21 Insertion Loss

Figure 6. ESD8111 Capacitance over Frequency

ESD8101, ESD8111

TYPICAL CHARACTERISTICS

Figure 7. ESD8101 Positive TLP I-V Curve

Figure 8. ESD8111 Positive TLP I-V Curve

Figure 10. ESD8111 Negative TLP I-V Curve

IEC 61000-4-2 Spec.

Level	Test Volt- age (kV)	First Peak Current (A)	Current at $\mathbf{3 0} \mathbf{~ n s ~ (A) ~}$	Current at $\mathbf{6 0 ~ n s ~ (A) ~}$
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8

Figure 11. IEC61000-4-2 Spec

Transmission Line Pulse (TLP) Measurement

Transmission Line Pulse (TLP) provides current versus voltage ($\mathrm{I}-\mathrm{V}$) curves in which each data point is obtained from a 100 ns long rectangular pulse from a charged transmission line. A simplified schematic of a typical TLP system is shown in Figure 12. TLP I-V curves of ESD protection devices accurately demonstrate the product's ESD capability because the 10 s of amps current levels and under 100 ns time scale match those of an ESD event. This is illustrated in Figure 13 where an 8 kV IEC 61000-4-2 current waveform is compared with TLP current pulses at 8 A and 16 A . A TLP I-V curve shows the voltage at which the device turns on as well as how well the device clamps voltage over a range of current levels.

Figure 12. Simplified Schematic of a Typical TLP System

Figure 13. Comparison Between 8 kV IEC 61000-4-2 and 8 A and 16 A TLP Waveforms

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.

MILLIMETERS		
DIM	MIN	MAX
A	0.165	0.195
A1	---	0.030
b	0.177	0.193
D	0.435	BSC
E	0.230	BSC
e	0.270	BSC
L	0.112	0.128

GENERIC
MARKING DIAGRAM*
${ }^{0} \mathrm{x}$
$\mathrm{X}=$ Specific Device Code
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

RECOMMENDED SOLDER FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON82198E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | DSN2, 0.435X0.23, 0.27P (01005) | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

X4DFN2, $0.60 \times 0.30,0.36 P$

CASE 152AX
ISSUE G
DATE 12 APR 2019

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS

	MILLIMETERS		
DIM	MIN	NOM	MAX
A	0.175	0.200	0.225
A1	0.018 REF		
b	0.205	0.215	0.225
D	0.575	0.600	0.625
E	0.275	0.300	0.325
e	0.36 BSC		
L	0.145	0.155	0.165

GENERIC MARKING DIAGRAM*

X = Specific Device Code
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present. Some products may not follow the Generic Marking.

RECOMMENDED

 SOLDER FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON06808G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | X4DFN2, 0.60x0.30,0.36P | PAGE 1 OF 1 |

ON Semiconductor and (01) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.

	MILLIMETERS		
DIM	MIN	NOM	MAX
A	0.250	0.275	0.300
A1	0.000	0.025	0.050
b	0.140	0.155	0.170
D	0.570	0.600	0.630
E	0.270	0.300	0.330
E	0.36 BSC		
L	0.190	0.215	0.240

GENERIC
MARKING DIAGRAM*

X

X = Specific Device Code
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " \bullet ", may or may not be present. Some products may not follow the Generic Marking.

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON49805E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WLCSP2, 0.6X0.3 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ESD Suppressors / TVS Diodes category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
60KS200C D12V0H1U2WS-7 D18V0L1B2LP-7B 82356050220 D5V0M5U6V-7 NTE4902 P4KE27CA P6KE11CA P6KE39CA-TP P6KE8.2A SA110CA SA60CA SA64CA SMBJ12CATR SMBJ8.0A SMLJ30CA-TP ESD101-B1-02ELS E6327 ESD112-B1-02EL E6327 ESD119B1W01005E6327XTSA1 ESD5V0J4-TP ESD5V0L1B02VH6327XTSA1 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF 3.0SMCJ33CA-F 3.0SMCJ36A-F HSPC16701B02TP D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DESD5V0U1BL-7B DRTR5V0U4SL-7 SCM1293A-04SO ESD200-B1-CSP0201 E6327 ESD203-B1-02EL E6327 SM12-7 SMF8.0A-TP SMLJ45CA-TP CEN955 W/DATA 8235012056082356240030 VESD12A1A-HD1-GS08 CPDUR5V0R-HF CPDUR24V-HF CPDQC5V0U-HF CPDQC5V0USP-HF CPDQC5V0-HF D1213A-01LP4-7B D1213A-02WL-7 ESDLIN1524BJ-HQ 5KP100A

