

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FAN3278

30V PMOS－NMOS Bridge Driver

Features

－ 8 V to 27 V Optimum Operating Range
－Drives High－Side PMOS and Low－Side NMOS in Motor Control or Buck Step－Down Applications
－Output Drive－Voltage Magnitude Limited：＜13V for $V_{D D}$ up to 30V
－Biases Each Load Device OFF with a $100 \mathrm{k} \Omega$ Resistor when $V_{D D}$ Below Operating Level
－Low－Voltage TTL Input Thresholds
－Peak Gate Drives at $12 \mathrm{~V}:+1.5 \mathrm{~A}$ Sink，-1.0 A Source
－Internal Resistors Hold Driver Off When No Inputs Present
－8－Lead SOIC Package
－Rated from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Ambient

Applications

－Motor Control with PMOS／NMOS Half－Bridge Configuration
－Buck Converters with High－Side PMOS Device； 100\％Duty Cycle Operation Possible
－Logic－Controlled Load Circuits with High－Side PMOS Switch

Description

The FAN3278 dual 1．5A gate driver is optimized to drive a high－side P－channel MOSFET and a low－side N－channel MOSFET in motor control applications operating from a voltage rail up to 27 V ．Internal circuitry limits the voltage applied to the gates of the external MOSFETs to 13 V maximum．The driver has TTL input thresholds and provides buffer and level translation from logic inputs．Internal circuitry prevents the output switching devices from operating if the $V_{D D}$ supply voltage is below the IC operation level．Internal $100 \mathrm{k} \Omega$ resistors bias the non－inverting output LOW and the inverting output to $V_{D D}$ to keep the external MOSFETs off during startup intervals when logic control signals may not be present．

The FAN3278 driver incorporates MOSFET devices for the final output stage，providing high current throughout the MOSFET turn－on／turn－off transition to minimize switching loss．The internal gate－drive regulators provide optimum gate－drive voltage when operating from a rail of 8 V to 27 V ．The FAN3278 can be driven from a voltage rail of less than 8 V ；however，its gate drive current is reduced．

The FAN3278 has two independent ENABLE pins that default to ON if not connected．If the ENABLE pin for non－inverting channel A is pulled LOW，OUTA is forced LOW．If the ENABLE pin for inverting channel B is pulled LOW，OUTB is forced HIGH．If an input is left unconnected，internal resistors bias the inputs such that the external MOSFETs are OFF．

Figure 1．Typical Application

Ordering Information

Part Number	Logic	Input Threshold	Packing Method
FAN3278TMX	Non-Inverting Channel and Inverting Channel with Dual Enable	TTL	2,500 Units on Tape \& Reel

Figure 2. Typical 3-Phase Blower Motor Drive Application

Pin Configuration

Figure 3. Pin Configuration (Top View)

Thermal Characteristics ${ }^{(1)}$

Package	$\Theta_{\mathrm{JL}}{ }^{(2)}$	$\Theta_{\text {JT }}{ }^{(3)}$	$\Theta_{\mathrm{JA}}{ }^{(4)}$	$\Psi_{J B}{ }^{(5)}$	$\Psi_{\text {JT }}{ }^{(6)}$	Unit
8-Pin Small-Outline Integrated Circuit (SOIC)	40	31	89	43	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes:

1. Estimates derived from thermal simulation; actual values depend on the application.
2. Theta_JL $\left(\Theta_{\mathrm{JL}}\right)$: Thermal resistance between the semiconductor junction and the bottom surface of all the leads (including any thermal pad) that are typically soldered to a PCB.
3. Theta_JT $\left(\Theta_{\mathrm{JT}}\right)$: Thermal resistance between the semiconductor junction and the top surface of the package, assuming it is held at a uniform temperature by a top-side heatsink.
4. Theta_JA $\left(\Theta_{J A}\right)$: Thermal resistance between junction and ambient, dependent on the PCB design, heat sinking, and airflow. The value given is for natural convection with no heatsink, as specified in JEDEC standards JESD51-2, JESD51-5, and JESD51-7, as appropriate.
5. Psi_JB $\left(\Psi_{\mathrm{JB}}\right)$: Thermal characterization parameter providing correlation between semiconductor junction temperature and an application circuit board reference point for the thermal environment defined in Note 4. For the SOIC-8 package, the board reference is defined as the PCB copper adjacent to pin 6.
6. Psi_JT ($\left.\Psi_{Ј т}\right)$: Thermal characterization parameter providing correlation between the semiconductor junction temperature and the center of the top of the package for the thermal environment defined in Note 4.

Pin Definitions

Pin\#	Name	Description
1	ENA	Enable Input for Channel A. Pull pin LOW to inhibit driver A. ENA has TTL thresholds.
8	ENB	Enable Input for Channel B. Pull pin LOW to inhibit driver B. ENB has TTL thresholds.
3	GND	Ground. Common ground reference for input and output circuits.
2	INA	Input to Channel A.
4	INB	Input to Channel B.
7	OUTA	Gate Drive Output A: Held LOW unless required input is present and $V_{D D}$ is above the internal voltage threshold where the IC is functional.
5	$\overline{O U T B}$	Gate Drive Output B (inverted from the input). Held HIGH unless the required input is present and VD is above the internal voltage threshold where the IC is functional.
6	VDD	Supply Voltage. Provides power to the IC.

Output Logic

FAN3278 (Channel A)		
ENA	INA	OUTA
0	$0^{(7)}$	0
0	1	0
$1^{(7)}$	$0^{(7)}$	0
$1^{(7)}$	1	1

FAN3278 (Channel B)		
ENB	INB	$\overline{\text { OUTB }}$
0	$0^{(7)}$	1
0	1	1
$1^{(7)}$	$0^{(7)}$	1
$1^{(7)}$	1	0

Note:

7. Default input signal if no external connection is made.

Block Diagram

Figure 4. Block Diagram

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
$V_{D D}$	VDD to PGND	-0.3	30.0	V
$\mathrm{~V}_{\mathrm{EN}}$	ENA, ENB to GND	GND -0.3	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\text {IN }}$	INA, INB to GND	GND -0.3	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\text {OUT }}$	OUTA, OUTB to GND	GND -0.3	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~T}_{\mathrm{L}}$	Lead Soldering Temperature (10 Seconds)		+260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	-55	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65	+150	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
$V_{D D}$	Supply Voltage Range	8	27	V
$\mathrm{~V}_{\mathrm{EN}}$	Enable Voltage (ENA, ENB)	0	$\mathrm{~V}_{\mathrm{DD}}$	V
V_{IN}	Input Voltage (INA, INB)	0	$\mathrm{~V}_{\mathrm{DD}}$	V
T_{A}	Operating Ambient Temperature	-40	+125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$ and $\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Currents are defined as positive into the device ($l_{\text {sink }}$) and negative out of the device ($\mathrm{I}_{\text {source }}$).

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Supply						
VDD	Optimum Operating Range ${ }^{(8)}$		8		27	V
IDD	Supply Current Inputs / EN Not Connected			1.3	2.0	mA
Von	Turn-On Voltage ${ }^{(9)}$	$I N A=E N A=V_{D D}, I N B=E N B=0 V$		3.8		V
$\mathrm{V}_{\text {HYS }}$	Turn-On / Turn-Off Hysteresis ${ }^{(9)}$	$I N A=E N A=V_{D D}, I N B=E N B=0 V$		10		mV
Input ${ }^{(9)}$						
VIL	INx Logic Low Threshold		0.8	1.1		V
V_{IH}	INx Logic High Threshold			1.80	2.25	V
$\mathrm{V}_{\mathrm{HYS}}$	Logic Hysteresis Voltage		0.4	0.7	1.0	V
Enable						
$V_{\text {ENL }}$	Enable Logic Low Threshold	EN from 5V to 0V	0.8	1.2		V
$\mathrm{V}_{\text {ENH }}$	Enable Logic High Threshold	EN from 0 V to 5 V		1.60	2.25	V
$\mathrm{V}_{\text {HYS }}$	Logic Hysteresis Voltage ${ }^{(10)}$			0.7		V
R_{PU}	Enable Pull-Up Resistance			100		$\mathrm{k} \Omega$
$t_{\text {D1 }}$	Propagation A Delay, EN Rising ${ }^{(11)}$	0-5Vin, $1 \mathrm{~V} / \mathrm{ns}$ Slew Rate		44	70	ns
$t_{\text {D2 }}$	Propagation A Delay, EN Falling ${ }^{(11)}$	$0-5 \mathrm{~V}_{\mathrm{IN}}, 1 \mathrm{~V} / \mathrm{ns}$ Slew Rate		33	60	ns
$t_{\text {D2 }}$	Propagation B Delay, EN Rising ${ }^{(11)}$	0-5Vin, $1 \mathrm{~V} / \mathrm{ns}$ Slew Rate		39	70	ns
$t_{\text {D1 }}$	Propagation B Delay, EN Falling ${ }^{(11)}$	$0-5 \mathrm{~V}_{\mathrm{IN}}, 1 \mathrm{~V} / \mathrm{ns}$ Slew Rate		29	60	ns

Timing Diagrams

Figure 5. Non-Inverting

Figure 6. Inverting

Electrical Characteristics (Continued)

Unless otherwise noted, $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$ and $\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Currents are defined as positive into the device ($l_{\text {sink }}$) and negative out of the device ($l_{\text {source }}$).

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Output						
$\mathrm{I}_{\text {PK_OFF }}$	OUT Current, Peak, Turn-Off ${ }^{(10)}$	$\mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F}, \mathrm{f}=1 \mathrm{kHz}$		1.5		A
IPK_on	OUT Current, Peak, Turn-On ${ }^{(10)}$	$\mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F}, \mathrm{f}=1 \mathrm{kHz}$		-1.0		A
loff	OUT Current, Mid-Voltage, Turn-Off ${ }^{10}$	OUT at $V_{D D}, C_{L O A D}=0.1 \mu \mathrm{~F}$, $\mathrm{f}=1 \mathrm{kHz}$		1.0		A
Ion	OUT Current, Mid-Voltage, Turn-On ${ }^{(10)}$	$\begin{aligned} & \text { OUT at } V_{D D} / 2, C_{L O A D}=0.1 \mu \mathrm{~F}, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		-0.5		A
$V_{\text {OUTA }}$	OUTA Drive Voltage	$\mathrm{V}_{\mathrm{DD}}=27 \mathrm{~V}$, $\mathrm{INA}=$ " $\mathrm{HI}{ }^{\prime}$		11	13	V
Voutb	OUTB Drive Voltage, $\mathrm{V}_{\text {DD }}$ - V $\mathrm{V}_{\text {OUTB }}$	$V_{D D}=27 \mathrm{~V}, \mathrm{INA}=$ "HI"		11	13	V
$\mathrm{V}_{\text {Outa }}$	OUTA Drive Voltage	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$, INB="HI"	6.5	7.0		V
Voutb	OUTB Drive Voltage, $\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {оиt }}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$, INB="HI"	6.5	7.0		V
RO_A_SINK	OUTA Sink Impedance (Turn-Off) ${ }^{(10)}$	$\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F}$		4.2		Ω
Ro_A_SRC	OUTA Source Impedance (Turn-On) ${ }^{(10)}$	$\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F}$		10.3		Ω
Ro_B_SINK	OUTB Sink Impedance (Turn-On) ${ }^{(10)}$	$\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F}$		6.8		Ω
Ro_B_SRC	OUTB Source Impedance (Turn-Off) ${ }^{(10)}$	$\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F}$		13.7		Ω
ton, N	Output A Rise Time ${ }^{(11)}$	$\mathrm{C}_{\text {LOAD }}=1000 \mathrm{pF}$ to GND		17	30	ns
$\mathrm{t}_{\text {OfF, } \mathrm{N}}$	Output A Fall Time ${ }^{(11)}$	$\mathrm{C}_{\text {LOAD }}=1000 \mathrm{pF}$ to GND		8	15	ns
ton, P	Output B Fall Time ${ }^{(11)}$	$\mathrm{C}_{\text {LOAD }}=1000 \mathrm{pF}$ to $\mathrm{V}_{\text {DD }}$		21	30	ns
toff, P	Output B Rise Time ${ }^{(11)}$	$\mathrm{C}_{\text {LOAD }}=1000 \mathrm{pF}$ to $\mathrm{V}_{\text {dD }}$		8	15	ns
$\mathrm{t}_{\mathrm{D} 1}$	Output Propagation Delay On ${ }^{(11)}$	$0-5 \mathrm{~V}_{\text {IN }}, 1 \mathrm{~V} / \mathrm{ns}$ Slew Rate		45	70	ns
$\mathrm{t}_{\mathrm{D} 2}$	Output Propagation Delay Off ${ }^{(11)}$	0-5Vin , 1V/ns Slew Rate		35	60	ns
IRvs	Output Reverse Current Withstand ${ }^{(10)}$			500		mA

Notes:

8. The internal gate-drive regulators provide optimum gate-drive voltage when operating from a rail of 8 V to 27 V . The FAN3278 can be driven from a voltage rail of less than 8 V ; however, with reduced gate drive current.
9. EN inputs have near-TTL thresholds (refer to the ENABLE section).
10. Not tested in production.
11. See the Timing Diagrams of Figure 5 and Figure 6.

Typical Performance Characteristics

Typical characteristics are provided at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$ unless otherwise noted.

Figure 7. I_{DD} (Static) vs. Supply Voltage ${ }^{(12)}$

Figure 9. IDD (No Load) vs. Frequency

Figure 11. Input Thresholds vs. Temperature

Figure 8. $I_{D D}$ (Static) vs. Temperature ${ }^{(12)}$

Figure 10. I_{DD} (1nF Load) vs. Frequency

Typical Performance Characteristics

Typical characteristics are provided at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$ unless otherwise noted.

Figure 12. Propagation Delays vs. Temperature

Figure 14. Rise and Fall Times vs. Temperature

Figure 16. Gate Drive Voltage vs. Temperature

Figure 13. Propagation Delays vs. Temperature

Figure 15. Rise and Fall Times vs. Temperature

Figure 17. Gate Drive Voltage vs. Temperature

Note:
12. For any inverting inputs pulled LOW, non-inverting inputs pulled HIGH, or outputs driven HIGH; static I_{DD} increases by the current flowing through the corresponding pull-up/down resistor, shown in Figure 4.

Applications Information

Input Thresholds

The FAN3278 driver has TTL input thresholds and provides buffer and level translation functions from logic inputs. The input thresholds meet industrystandard TTL-logic thresholds, independent of the $V_{D D}$ voltage, and there is a hysteresis voltage of approximately 0.4 V . These levels permit the inputs to be driven from a range of input logic signal levels for which a voltage over 2 V is considered logic HIGH. The driving signal for the TTL inputs should have fast rising and falling edges with a slew rate of $6 \mathrm{~V} / \mu \mathrm{s}$ or faster, so a rise time from 0 to 3.3 V should be 550 ns or less. With reduced slew rate, circuit noise could cause the driver input voltage to exceed the hysteresis voltage and retrigger the driver input inadvertently.

Static Supply Current

In the $I_{D D}$ (static) typical performance characteristics (see Figure 7 and Figure 8), the curve is produced with all inputs / enables floating (OUTA is LOW, OUTB is HIGH) and indicates the lowest static IDD current for the tested configuration. For other states, additional current flows through the $100 \mathrm{k} \Omega$ resistors on the inputs and outputs, shown in the block diagram (see Figure 4). In these cases, the static $I_{D D}$ current is the value obtained from the curves plus this additional current.

Gate Drive Regulator

FAN3278 incorporates internal regulators to regulate the gate drive voltage. The output pin slew rate is determined by this gate drive voltage and the load on the output. It is not user adjustable, but a series resistor can be added if a slower rise or fall time is needed at the MOSFET gate.

Startup Operation

The FAN3278 startup logic is optimized to drive a groundreferenced N -channel MOSFET with channel A and a $V_{D D}$-referenced P-channel MOSFET with channel B.

The optimum operating voltage of the FAN3278 is 8 V to 27 V . It has an internal "watchdog" circuit that provides a loose UVLO turn-on voltage (V_{ON}) of approximately 3.8 V with a small hysteresis of about 10 mV . However, it is recommended that $V_{D D}$ is greater than 4.75 V in all application circuits.

When the $V_{D D}$ supply voltage is below the level needed to operate the internal circuitry, the outputs are biased to hold the external MOSFETs in OFF state. Internal $100 \mathrm{k} \Omega$ resistors bias the non-inverting output LOW and the inverting output to $V_{D D}$ to keep the external MOSFETs off during startup intervals when input control signals may not be present.

Figure 18 shows startup waveforms for non-inverting channel A. At power-up, the driver output for channel A remains LOW until $V_{D D}$ reaches the voltage where the device starts operating, then OUTA operates in-phase with INA.

Figure 18. Non-Inverting Startup Waveforms

Figure 19 illustrates startup waveforms for inverting channel B. At power-up, the driver output for channel B is tied to $V_{D D}$ through an internal $100 \mathrm{k} \Omega$ resistor until $V_{D D}$ reaches the voltage where the device starts operating, then OUTB operates out of phase with INB.

Figure 19. Inverting Startup Waveforms
It is possible, during startup, before $V_{D D}$ has reached approximately 4.5 V , that the output pulse width may take a few switching cycles to reach the full duty-cycle of the input pulse. This is due to internal propagation delays affecting the operation with higher switching frequency (e.g. $>100 \mathrm{kHz}$) and slow V_{DD} ramp-up (e.g. $<20 \mathrm{~V} / \mathrm{ms}$). For this reason, it is recommended that V_{DD} should be greater than 4.75 V before any INA or INB signals are present.
For high-frequency applications (several hundred kHz up to 1 MHz), where the above recommendation of $V_{D D}$ $>4.75 \mathrm{~V}$ is not possible, the use of ENABLES to actively hold the outputs LOW until $\mathrm{V}_{\mathrm{DD}}>4.75 \mathrm{~V}$ assures the driver output pulse width follows the input from 4.75 V up to 28 V .

V DD $_{\text {DD }}$ Bypass Capacitor Guidelines

To enable this IC to turn a device on quickly, a local high-frequency bypass capacitor, C_{BY}, with low ESR and ESL should be connected between the VDD and GND pins with minimal trace length. This capacitor is in addition to bulk electrolytic capacitance of $10 \mu \mathrm{~F}$ to $47 \mu \mathrm{~F}$ commonly found on driver and controller bias circuits.

A typical criterion for choosing the value of $\mathrm{C}_{\mathrm{BYP}}$ is to keep the ripple voltage on the V_{DD} supply to $\leq 5 \%$. This is often achieved with a value ≥ 20 times the equivalent load capacitance $C_{E Q V}$, defined as $Q_{G A T E} / V_{D D}$. Ceramic capacitors of $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ or larger are common choices, as are dielectrics, such as X5R and X7R, with stable temperature characteristics and high pulse current capability.

If circuit noise affects normal operation, the value of $\mathrm{C}_{\mathrm{BYP}}$ may be increased to 50-100 times the $\mathrm{C}_{\text {EQV }}$ or $\mathrm{C}_{\text {BYP }}$ may be split into two capacitors. One should be a larger value, based on equivalent load capacitance, and the other a smaller value, such as $1-10 \mathrm{nF}$, mounted closest to the VDD and GND pins to carry the higher-frequency components of the current pulses. The bypass capacitor must provide the pulsed current from both of the driver channels and, if the drivers are switching simultaneously, the combined peak current sourced from the C_{BY} can be twice as large as when a single channel is switching.

Layout and Connection Guidelines

The FAN3278 gate driver incorporates fast-reacting input circuits, short propagation delays, and powerful output stages capable of delivering current peaks over 1.5A to facilitate fast voltage transition times. The following layout and connection guidelines are strongly recommended:

- Keep high-current output and power ground paths separate from logic and enable input signals and signal ground paths. This is especially critical when dealing with TTL-level logic thresholds at driver inputs and enable pins
- Keep the driver as close to the load as possible to minimize the length of high-current traces. This reduces the series inductance to improve highspeed switching, while minimizing the loop area that can couple EMI to the driver inputs and surrounding circuitry.
- If the inputs to a channel are not externally connected, the internal $100 \mathrm{k} \Omega$ resistors indicated on block diagrams command a low output on channel A and a high output on channel B. In noisy environments, it may be necessary to tie inputs of an unused channel to VDD or GND using short traces to prevent noise from causing spurious output switching.
- Many high-speed power circuits can be susceptible to noise injected from their own output or other external sources, possibly causing output mistriggering. These effects can be obvious if the circuit is tested in breadboard or non-optimal circuit layouts with long input, enable, or output leads. For
best results, make connections to all pins as short and direct as possible.
- The turn-on and turn-off current paths should be minimized, as discussed above.

Thermal Guidelines

Gate drivers used to switch MOSFETs and IGBTs at high frequencies can dissipate significant amounts of power. It is important to determine the driver power dissipation and the resulting junction temperature in the application to ensure the part is operating within acceptable temperature limits.

The total power dissipation in a gate driver is the sum of two components, $\mathrm{P}_{\text {GATE }}$ and $\mathrm{P}_{\text {dYnamic: }}$

$$
\begin{equation*}
P_{\text {total }}=P_{\text {GATE }}+P_{\text {DYNAMIC }} \tag{1}
\end{equation*}
$$

Gate Driving Loss: The most significant power loss results from supplying gate current (charge per unit time) to switch the load MOSFET on and off at the switching frequency. The power dissipation that results from driving a MOSFET with a specified gate-source voltage, V_{GS}, with gate charge, Q_{G}, at switching frequency, f_{sw}, is determined by:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{GATE}}=\mathrm{Q}_{\mathrm{G}} \cdot \mathrm{~V}_{\mathrm{GS}} \cdot \mathrm{f}_{\mathrm{SW}} \tag{2}
\end{equation*}
$$

This needs to be calculated for each P-channel and N channel MOSFET where the Q_{G} is likely to be different.

Dynamic Pre-drive / Shoot-through Current: Power loss resulting from internal current consumption under dynamic operating conditions, including pin pull-up / pull-down resistors, can be obtained using the "lod (NoLoad) vs. Frequency" graphs in Figure 9 to determine the current $l_{\text {DYNAMIC }}$ drawn from $V_{D D}$ under actual operating conditions.

$$
\begin{equation*}
P_{\text {DYNAMIC }}=I_{\text {DYNAMIC }} \cdot V_{\text {DD }} \tag{3}
\end{equation*}
$$

Once the power dissipated in the driver is determined, the driver junction rise with respect to circuit board can be evaluated using the following thermal equation, assuming $\psi_{J B}$ was determined for a similar thermal design (heat sinking and air flow):

$$
\begin{equation*}
\mathrm{T}_{\mathrm{J}}=\mathrm{P}_{\mathrm{TOTAL}} \cdot \psi_{\mathrm{JB}}+\mathrm{T}_{\mathrm{B}} \tag{4}
\end{equation*}
$$

where:
$\mathrm{T}_{\mathrm{J}}=$ driver junction temperature
$\psi_{\mathrm{JB}}=(\mathrm{psi})$ thermal characterization parameter relating temperature rise to total power dissipation
$\mathrm{T}_{\mathrm{B}}=$ board temperature in location defined in Note 1 under Thermal Resistance table.

As an example of a power dissipation calculation, consider an application driving two MOSFETs (one Pchannel and one N -channel, both with a gate charge of 60 nC each) with $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$. At a switching frequency of 200 kHz , the total power dissipation is:

$$
\begin{align*}
& P_{\text {GATE }}=60 \mathrm{nC} \cdot 12 \mathrm{~V} \cdot 200 \mathrm{kHz} \cdot 2=0.288 \mathrm{~W} \tag{5}\\
& \text { P }_{\text {DYNAMIC }}=1.65 \mathrm{~mA} \cdot 12 \mathrm{~V}=0.020 \mathrm{~W} \tag{6}\\
& \text { PTOTAL }=0.308 \mathrm{~W} \tag{7}
\end{align*}
$$

The SOIC-8 package has a junction-to-board thermal characterization parameter of $\psi_{\mathrm{JB}}=43^{\circ} \mathrm{C} / \mathrm{W}$. In a system application, the localized temperature around the device is a function of the layout and construction of the PCB along with airflow across the surfaces. To ensure reliable operation, the maximum junction temperature of the device must not exceed the absolute maximum rating of $150^{\circ} \mathrm{C}$; with 80% derating, T_{J} would be limited to $120^{\circ} \mathrm{C}$. Rearranging Equation 4 determines the board temperature required to maintain the junction temperature below $120^{\circ} \mathrm{C}$:

$$
\begin{align*}
& \mathrm{T}_{\mathrm{B}}=\mathrm{T}_{J}-\mathrm{P}_{\mathrm{TOTAL}} \cdot \Psi_{\mathrm{JB}} \tag{8}\\
& \mathrm{~T}_{\mathrm{B}}=120^{\circ} \mathrm{C}-0.308 \mathrm{~W} \cdot 43^{\circ} \mathrm{C} / \mathrm{W}=107^{\circ} \mathrm{C} \tag{9}
\end{align*}
$$

Test Circuit

Figure 20. Quasi-Static lout $/ \mathrm{V}_{\text {out }}$ Test Circuit

Differences between FAN3278 and FAN3268

FAN3278 and FAN3268 are pin-compatible to each other and are designed to drive one P-Channel and one N-channel MOSFET in applications such as battery-powered compact fan / pump DC motor drives. However, there are key differences, highlighted in Table 1.

Table 1. Differences between FAN3278 and FAN3268

	FAN3278	FAN3268
Supply Voltage	27V Operating Maximum 30V Absolute Maximum	18V Operating Maximum 20V Absolute Maximum
Gate Drive Regulator	Yes, since the maximum operating $V_{D D}$ can be as high as 27 V , the gate voltage to the external MOSFETs is limited to about 13 V .	No gate drive regulator is needed. The gate drive voltage is $V_{D D}$ and the FAN3268 switches rail-to-rail.
Minimum Operating Voltage	The optimum operating range is 8 V to 27 V . After the IC turns on at about 3.8 V , the output tracks $V_{D D}$ up to the regulated voltage rail of about 11~13V. Below 8 V of $V_{D D}$, the FAN3278 operates, but (a) slower and (b) with limited gate drive voltage until it reaches around 8 V .	4.1V is the UVLO turn-off voltage which is the minimum operating voltage.
Startup	The IC starts operating approximately at 3.8 V which acts as a loose UVLO threshold. It incorporates a "smart startup" feature where the outputs are held OFF before the IC starts operating.	Has the tight UVLO threshold of 4.5 V on / 4.1V off. Incorporates "smart startup" (outputs held OFF before IC is fully operational at the UVLO threshold).
Output Gate Drive Architecture	Standard MOS-based output structure with gate drive clamp.	Compound MillerDrive ${ }^{\text {TM }}$ architecture in the final output stage to provide a more efficient gate drive current during the Miller plateau stage of the turn-on/turn-off switching transition.
OUTB Gate Drive Current Strength	Optimized for P-channel: The turn-OFF (1.5 A$)$ is stronger than turn-ON (1.0A).	P-channel turn-ON (2.4A) is stronger than turn-OFF (1.6A).

Table 2. Related Products

Part Number	Type	Gate Drive ${ }^{(13)}$ (Sink / Src)	Input Threshold	Logic	Package
FAN3111C	Single 1A	+1.1A/-0.9A	CMOS	Single Channel of Dual-Input/Single-Output	SOT23-5, MLP6
FAN3111E	Single 1A	+1.1A/-0.9A	External ${ }^{(14)}$	Single Non-Inverting Channel with External Reference	SOT23-5, MLP6
FAN3100C	Single 2A	+2.5A / -1.8A	CMOS	Single Channel of Two-Input/One-Output	SOT23-5, MLP6
FAN3100T	Single 2A	+2.5A/-1.8A	TTL	Single Channel of Two-Input/One-Output	SOT23-5, MLP6
FAN3226C	Dual 2A	$+2.4 \mathrm{~A} /-1.6 \mathrm{~A}$	CMOS	Dual Inverting Channels + Dual Enable	SOIC8, MLP8
FAN3226T	Dual 2A	$+2.4 \mathrm{~A} /-1.6 \mathrm{~A}$	TTL	Dual Inverting Channels + Dual Enable	SOIC8, MLP8
FAN3227C	Dual 2A	$+2.4 \mathrm{~A} /-1.6 \mathrm{~A}$	CMOS	Dual Non-Inverting Channels + Dual Enable	SOIC8, MLP8
FAN3227T	Dual 2A	$+2.4 \mathrm{~A} /-1.6 \mathrm{~A}$	TTL	Dual Non-Inverting Channels + Dual Enable	SOIC8, MLP8
FAN3228C	Dual 2A	+2.4A/-1.6A	CMOS	Dual Channels of Two-Input/One-Output, Pin Config. 1	SOIC8, MLP8
FAN3228T	Dual 2A	+2.4A / -1.6A	TTL	Dual Channels of Two-Input/One-Output, Pin Config. 1	SOIC8, MLP8
FAN3229C	Dual 2A	+2.4A / -1.6A	CMOS	Dual Channels of Two-Input/One-Output, Pin Config. 2	SOIC8, MLP8
FAN3229T	Dual 2A	$+2.4 \mathrm{~A} /-1.6 \mathrm{~A}$	TTL	Dual Channels of Two-Input/One-Output, Pin Config. 2	SOIC8, MLP8
FAN3268T	Dual 2A	+2.4A / -1.6A	TTL	Non-Inverting Channel (NMOS) and Inverting Channel (PMOS) + Dual Enables	SOIC8
FAN3278T	Dual 2A	+1.4A / -1.0A	TTL	30V Non-Inverting (NMOS) and Inverting (PMOS) + Dual Enable	SOIC8
FAN3223C	Dual 4A	+4.3A/-2.8A	CMOS	Dual Inverting Channels + Dual Enable	SOIC8, MLP8
FAN3223T	Dual 4A	+4.3A / -2.8A	TTL	Dual Inverting Channels + Dual Enable	SOIC8, MLP8
FAN3224C	Dual 4A	+4.3A/-2.8A	CMOS	Dual Non-Inverting Channels + Dual Enable	SOIC8, MLP8
FAN3224T	Dual 4A	+4.3A / -2.8A	TTL	Dual Non-Inverting Channels + Dual Enable	SOIC8, MLP8
FAN3225C	Dual 4A	+4.3A / -2.8A	CMOS	Dual Channels of Two-Input/One-Output	SOIC8, MLP8
FAN3225T	Dual 4A	+4.3A / -2.8A	TTL	Dual Channels of Two-Input/One-Output	SOIC8, MLP8
FAN3121C	Single 9A	+9.7A / -7.1A	CMOS	Single Inverting Channel + Enable	SOIC8, MLP8
FAN3121T	Single 9A	+9.7A / -7.1A	TTL	Single Inverting Channel + Enable	SOIC8, MLP8
FAN3122T	Single 9A	+9.7A/-7.1A	CMOS	Single Non-Inverting Channel + Enable	SOIC8, MLP8
FAN3122C	Single 9A	+9.7A / -7.1A	TTL	Single Non-Inverting Channel + Enable	SOIC8, MLP8

Notes:

13. Typical currents with OUT at 6 V and $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$.
14. Thresholds proportional to an externally supplied reference voltage.

Physical Dimensions

LAND PATTERN RECOMMENDATION

OPTION B - NO BEVEL EDGE

NOTES: UNLESS OTHERWISE SPECIFIED
A) THIS PACKAGE CONFORMS TO JEDEC MS-012, VARIATION AA, ISSUE C,
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS
D) LANDPATTERN STANDARD: SOIC127P600X175-8M.
E) DRAWING FILENAME: M08AREV13

Figure 21. 8-Lead, Small-Outline Integrated Circuit (SOIC)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/.

FAIRCHILD
 SEMICONDUETDR

TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

$2 \mathrm{CoOl}{ }^{\text {TM }}$	F-PFS ${ }^{\text {TM }}$	PowerTrench ${ }^{\text {® }}$	The Power Franchise ${ }^{\text {E }}$
AccuPower ${ }^{\text {tu }}$	FRFET ${ }^{\text {® }}$	PowerXS ${ }^{\text {Th }}$	the wer.
AX-CAP ${ }^{\text {™ }}$	Global Power Resource ${ }^{\text {sm }}$	Programmable Active Droop ${ }^{\text {™ }}$	p Wer
BitSiC ${ }^{\text {™ }}$	GreenBridge ${ }^{\text {Tu }}$	QFET ${ }^{\text {® }}$	franchise
Build it $\mathrm{Now}^{\text {TM }}$	Green FPS ${ }^{\text {™ }}$	QS ${ }^{\text {w }}$	TinyBuck ${ }^{\text {™ }}$
CorePLUS ${ }^{\text {w }}$	Green FPS ${ }^{\text {™ }}$ e-Series ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {™ }}$
CorePOWER ${ }^{\text {™ }}$	Gmax ${ }^{\text {™ }}$	RapidConfigure ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {a }}$
CROSSVOLT ${ }^{\text {M }}$	$\mathrm{GTO}^{\text {™ }}$	$)^{\mathrm{Tm}}$	TINYOPTO ${ }^{\text {a }}$
CTL' ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {TM }}$	Saving our world, 1mWN/kW at a time ${ }^{\text {TM }}$	TinyPower ${ }^{\text {Tu }}$
Current Transfer Logic ${ }^{\text {™ }}$		SignaMise ${ }^{\text {Tu }}$	TinyPWM ${ }^{\text {Tu }}$
DEUXPEED ${ }^{\text {d }}$	Making Small Speakers Sound Louder and Better ${ }^{\text {TM }}$	SmartMax ${ }^{\text {Tu }}$	TinyWire ${ }^{\text {Tu }}$
EcosPARK ${ }^{\text {® }}$	MegaBuck ${ }^{\text {mm }}$	SMART START ${ }^{\text {TM }}$	Tran $\mathrm{SiC}^{\text {Tu }}$
EfficientMax ${ }^{\text {TM }}$	MICROCOUPLER ${ }^{\text {T }}$	Solutions for Your Success ${ }^{\text {™ }}$	TriFault Detect ${ }^{\text {™ }}$
ESBC ${ }^{\text {™ }}$	MicroFET ${ }^{\text {™ }}$	STEALTH ${ }^{\text {TM }}$	TRUECURRENT
$5^{(8)}$	MicroPak ${ }^{\text {™ }}$	SuperFET ${ }^{\text {® }}$	M
Fairchild ${ }^{\text {® }}$	MicroPak2 ${ }^{\text {m }}$ MillerDrive	SuperSOTM-3	SerDes
Fairchild Semiconductor ${ }^{(9)}$	Miller Drive ${ }^{\text {M }}$	SuperSOT ${ }^{\text {T- }}$-6	UHC ${ }^{\text {E3 }}$
FACT Quiet Series ${ }^{\text {™ }}$	mWSaver ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {mim-8 }}$	Ultra FRFET ${ }^{\text {™ }}$
$\mathrm{FACT}^{\text {® }}$	OptoHiT™	SupreMOS ${ }^{\text {e }}$	UniFET ${ }^{\text {4 }}$
FAST ${ }^{\text {® }}$	OPTOLOGIC ${ }^{\text {® }}$	SyncFET ${ }^{\text {Tu }}$	VCX ${ }^{\text {™ }}$
FastvCore ${ }^{\text {Tu }}$	OPTOPLANAR ${ }^{\text {® }}$	Sync-Lock ${ }^{\text {TM }}$	VisualMax ${ }^{\text {™ }}$
FETBench ${ }^{\text {TM }}$		SGENERAL ${ }_{\text {c }}$	VoltagePlus ${ }^{\text {TM }}$
FlashWriter ${ }^{\text {en* }}$			XS ${ }^{\text {TM }}$
FPS ${ }^{\text {Tu }}$	\bigcirc		

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN. WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESSWRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our extemal website, www.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authoxized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
 5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 02071000000207400000 $01312 \underline{0134220000} \underline{60713816}$ M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

