Linear LED Drivers with Single-Wire Digital Interface

FAN5622, FAN5624, FAN5626

Description

The FAN5622, FAN5624, and FAN5626 are two-, four-, and six-channel current-sink linear LED drivers used to backlight the main LCD displays or keypads in mobile electronics, such as cellular phone handsets.

A very low dropout of 50 mV allows driving LEDs without any inductors or switch capacitors. The brightness levels of the LED outputs are programmed through single–wire digital control interface. The user can program 32 linear dimming steps and turn on and off the LEDs through this interface by applying digital pulses.

The FAN562x family of linear LED drivers provides high efficiency due to the low drop-out voltage of the LED driver. Good matching between different channels of LED output is provided across the entire 32 dimming steps. These LED drivers also integrate short circuit, under-voltage, and thermal protection to ensure for a more robust solution.

The FAN5622, FAN5624, and FAN5626 are available in very small form-factor packages: 6-pin Super SOT23, 10-lead UMLP, and 10-lead MicroPak^m MLP, respectively.

Features

- Family of Three Linear Current–Sink LED Drivers that Support 2, 4, or 6 LED Outputs
- Current Sink Driver for Each LED Output:
 - 30 mA Maximum Output Current
 - 50 mV Drop-out at 15 mA IOUT
 - Better than 3% Matching between Channels
 - External R_{SET}
- Single-Wire Digital Control Interface for Easy Programming
 - 32 Linear Steps of Dimming Control
- Less than 1 µA Shutdown Current
- Short-Circuit, Under-Voltage, and Thermal Protection
- Wide Input Voltage Range: 2.7 to 5.5 V
- Small Form–Factor Packages:
- These are Pb–Free Devices
 - FAN5622: 6-Pin Super SOT23
 - FAN5624: 10-Lead 1.4x1.8x0.55 mm UMLP
 - ◆ FAN5626: 10-Lead 1.6x2.1x0.55 mm MicroPak MLP

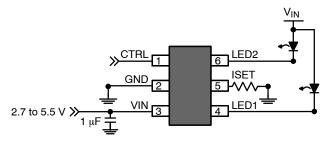
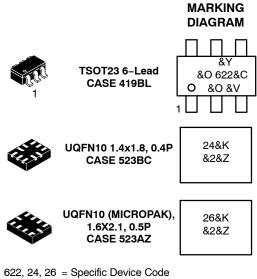



Figure 1. Typical Application of FAN5622

ON Semiconductor®

www.onsemi.com

- &Y = Binary Calendar Year Coding Scheme
 - = Plant Code Identifier
 - = Single Digit Die Run Code
 - = Eight-Week Binary Datacoding Scheme
 - = 2-Digits Lot Run Traceability Code
 - = 2-Digit Date Code
 - = Assembly Plant Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

Applications

&O

&C

&V

&K

&2

&Z

- Mobile Handsets
- Mobile Internet Devices
- PMP and MP3 Players
- LCD Modules

APPLICATIONS DIAGRAMS

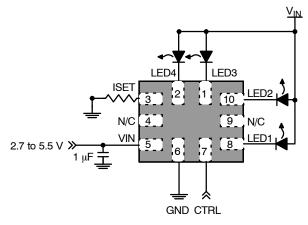


Figure 2. FAN5624 Typical Application for 4 LEDs

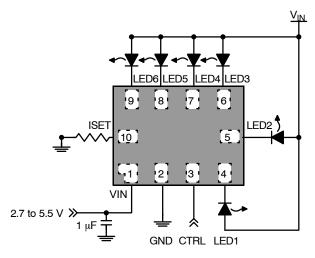
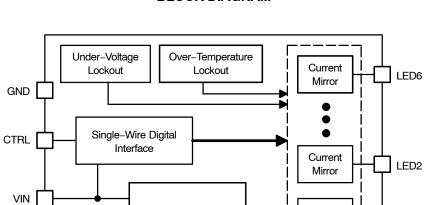
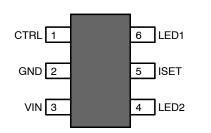



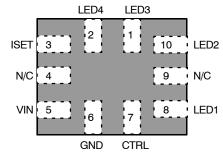
Figure 3. FAN5626 Typical Application for 6 LEDs

BLOCK DIAGRAM

Figure 4. Block Diagram

DAC


ISET


Current

Mirror

LED1

PIN CONFIGURATION

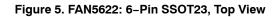


Figure 6. FAN5624: 10-Lead UMLP, Top View

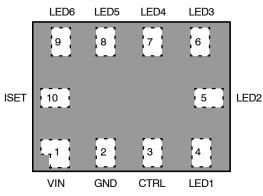


Figure 7. FAN5626: 10-Lead MicroPak MLP, Top View

	Pin No.			
FAN5622 SSOT23-6	FAN5624 UMLP10	FAN5626 MicroPak MLP10	Name	Description
3	5	1	VIN	Input Voltage. Connect to 2.7 – 5.5 V_{DC} input power source.
2	6	2	GND	Ground
5	3	10	ISET	LED Current Setting. Full-scale LED current is set by tying this pin through a resistor (R_{SET}) to GND.
1	7	3	CTRL	<i>Control</i> pin. Program dimming levels by driving pin with digital pulses. This pin cannot be left floating.
6	8	4	LED1	LED Cathode #1. LED current sink output.
4	10	5	LED2	LED Cathode #2. LED current sink output.
	1	6	LED3	LED Cathode #3. LED current sink output.
	2	7	LED4	LED Cathode #4. LED current sink output.
		8	LED5	LED Cathode #5. LED current sink output.
		9	LED6	LED Cathode #6. LED current sink output.
	4, 9		N/C	No Connect

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter			Max	Unit
V _{CC}	VIN Pin		-0.3	6.0	V
	Other Pins (Note 1)			V _{IN} + 0.3	V
ESD	Electrostatic Discharge Protection Level	Human Body Model per JESD22-A114	3.0		kV
		Charged Device Model per JESD22-C101	arged Device Model per JESD22-C101 1.5		
Τ _J	Junction Temperature		-40	+150	°C
T _{STG}	Storage Temperature		-65	+150	°C
ΤL	Lead Soldering Temperature, 10 Seconds		-	+260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Lesser of 6.0 V or V_{IN} + 0.3 V.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{IN}	Power Supply Voltage Range	2.7	5.5	V
T _A	Operating Ambient Temperature Range	-40	+85	°C
TJ	Operating Junction Temperature Range	-40	+125	°C
I _{LED(FS)}	Full-Scale LED Current	5	30	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

THERMAL PROPERTIES (Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with boards in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature $T_{J(max)}$ at a given ambient temperature T_{A} .)

Symbol	Parameter	Typical	Unit
θ_{JA}	Junction-to-Ambient Thermal Resistance, SSOT23-6 Package	235	°C/W
	Junction-to-Ambient Thermal Resistance, UMLP10 Package (Note 2)	287	°C/W
	Junction-to-Ambient Thermal Resistance, MicroPak MLP10 package (Note 3)	220	°C/W

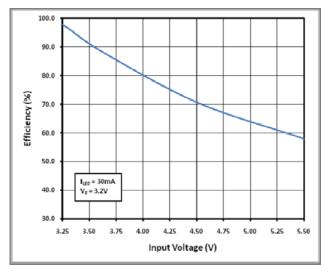
2. Recommended not to exceed 132 mW of maximum power dissipation.

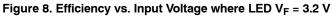
3. Recommended not to exceed 198 mW of maximum power dissipation.

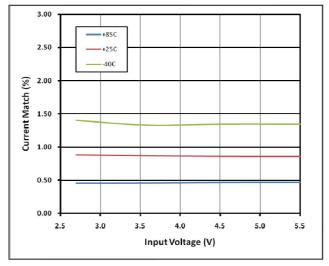
ELECTRICAL SPECIFICATIONS (V _{IN} = 2.7 V to 5.5 V, R _{SET} = 19.10 k Ω , T _A = -40°C to +85°C, V _f = 2.5 V to [3.5 V or V _{IN} - 0.1 V],
whichever is smaller. Typical values are at T_A = 25°C, V_{IN} = 3.6 V, and V_f = 3.2 V.)

Symbol	Parameter	Condition	Min	Тур	Max	Unit	
OWER SUP	OWER SUPPLIES						
I _{SD}	Shutdown Supply Current	V _{IN} = 3.6 V, CTRL = 0	-	0.3	1.0	μΑ	
I _{IN}	Operating Supply Current	FAN5622: V_{IN} = 3.6 V, I_{LED} = 0 mA	-	0.4	0.8	mA	
		FAN5624: V_{IN} = 3.6 V, I_{LED} = 0 mA	-	0.6	1.0	mA	
		FAN5626: V_{IN} = 3.6 V, I_{LED} = 0 mA	-	0.8	1.2	mA	
I _{IH}	Control Pin Input Current	CTRL = 1.8 V	-	1	250	nA	
V _{UVLO}	Under-Voltage Lockout Threshold	V _{IN} Rising	-	2.50	2.70	V	
		V _{IN} Falling	2.10	2.30	2.50	V	
EGULATION	 I	•	•	•	•	R	

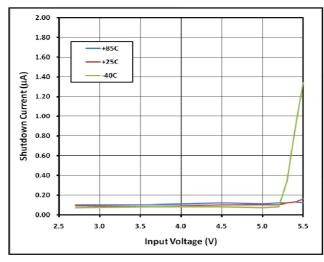
I _{FS_LEDx} (MAX)	Full-Scale LED Output Current	I _{LEDx} = 30 mA; x = 1 to 6	5	-	30	mA
I _{LED}	Absolute Current Accuracy	V_{IN} = 2.85 V $-$ 4.5 V; V_{CATH} = 0.15 to (1.2 V or V_{IN} = 2.55 V, Whichever is Smaller); Full–Scale Current 5 $-$ 30 mA, T_A = 25°C	-10	-	+10	%
ILED MATCH	LED Current Matching (Note 4)	I_{LEDx} = 15 mA; V_LEDx = 0.4 V, T _A = 25°C	-3	-	+3	%
VISET	I _{SET} Drive Voltage	$9.53 \ k\Omega \leq R_{SET} \leq 56.2 \ k\Omega$	-	1.20	-	V
I _{RATIO}	Current Mirror Ratio from ISET Pin	$9.53 \ k\Omega \leq R_{SET} \leq 56.2 \ k\Omega$	-	240	-	
ΔI_{OUT_LOAD}	I _{OUT} Load Regulation	V_{IN} = 3.6 V, I _{LEDx} = 15 mA, LED V_F = 2.7 to 3.5 V	-3	-	+3	%
ΔI_{OUT}_{LINE}	I _{OUT} Line Regulation	V_{IN} = 2.7 to 4.8 V, I_{LEDx} = 15 mA, V_{CATH} = 0.5 V	-4	-	+4	%
V _{DROPOUT}	Dropout Voltage	V _{IN} = 3.6 V; I _{LED} = 15 mA, -10% I _{LED} Drop	_	50	-	mV
		V _{IN} = 3.6 V; I _{LED} = 30 mA, -10% I _{LED} Drop	_	60	_	
TSD	Thermal Shutdown	Rising Temperature at Junction	-	150	-	°C
		Hysteresis	-	20	-	


LOGIC INPUT (CTRL)


V _{IH}	HIGH-Level Input Voltage		1.2	-	-	V
VIL	LOW-Level Input Voltage		-	-	0.4	V
T _{LO}	CTRL LOW Time for Dimming	V _{IN} = 3.6 V; See Figure 17	0.5	-	300	μs
T _{HI}	Time Delay between Steps	V _{IN} = 3.6 V; See Figure 17	0.5	-	-	μs
T _{ON}	CTRL HIGH to Turn-On Delay	V _{IN} = 3.6 V; See Figure 17	-	250	-	μs
T _{SD}	CTRL LOW, Shutdown Pulse Width	V_{IN} = 3.6 V; from Falling Edge of CTRL	1	-	-	ms


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product

 For the two, four, and six LED current sinks of FAN5622, FAN5624, and FAN5626 respectively; the following are determined: the maximum sink current of the two, four, and six LED outputs (MAX); the minimum sink current of the two, four, and six outputs (MIN); and the average sink current (AVG). For all of the LED outputs, two matching numbers are calculated: (MAX – AVG) / AVG and (AVG – MIN) / AVG. The largest number of the two (worst case) is considered the matching figure for the part. The matching figure for a given part is considered to be the highest matching figure of all LED outputs. The typical specification provided is the most likely norm of the matching figure for all parts.


TYPICAL PERFORMANCE CHARACTERISTICS

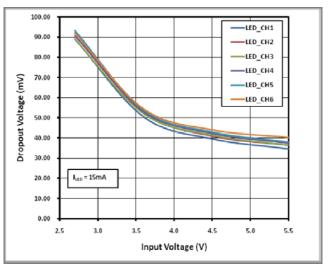
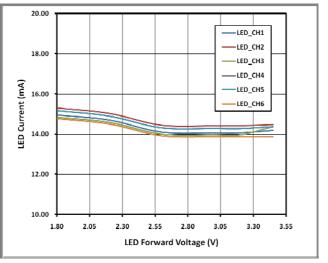
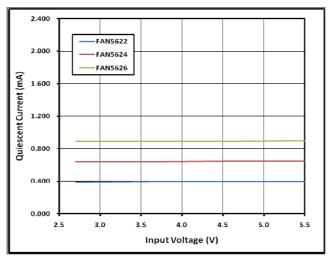
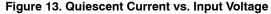
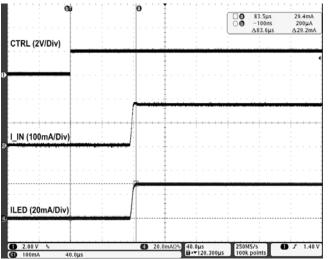





Figure 9. Dropout Voltage vs. Input Voltage



TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

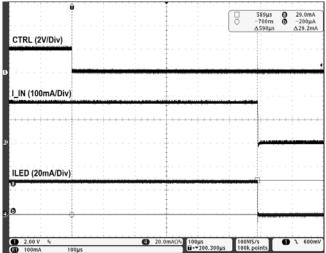


Figure 14. Startup Waveform for FAN5626

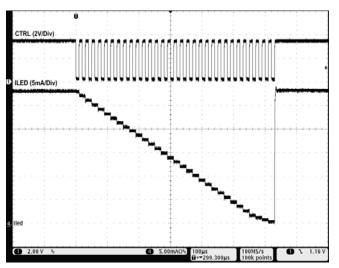


Figure 16. Dimming Operation

Figure 15. Shutdown Waveform for FAN5626

CIRCUIT DESCRIPTION

The FAN5622, FAN5624, and FAN5626 are a family of current–sink linear LED driver ICs able to drive two, four, and six LEDs respectively. These three devices are powered directly from 2.7 V to 5.5 V supply and all the channels are controlled via the integrated current sinks from the external power source. Designed with a very low drop–out voltage, the FAN562x products can operate close to the input supply voltage without the need for additional inductive boost or capacitive switching circuitry.

All three devices require only two additional discrete passive components: a single 1 μ F input ceramic capacitor and a resistor (R_{SET}) to set the maximum current for the LEDs. Each current–sink output provides constant current and can drive the LEDs up to 30 mA. ON Semiconductor's TinyWire single–wire digital interface enables these LED drivers to program the brightness level of the LEDs in 32 linear steps.

Setting Maximum Current

The maximum LED current of the FAN5622, FAN5624, and FAN5626 is programmed by an external resistor called RSET. The maximum full-scale LED current for all three LED drivers is 30 mA and it can go as low as 5 mA. The FAN562x products also operate below 5 mA full-scale LED current by using a larger R_{SET} value. However, the LED channel accuracy and matching specifications are guaranteed. Table 1 shows the RSET resistor values for several full-scale current levels.

Table 1. MAXIMUM LED CURRENT SETTINGS BY RESISTOR

I _{LED} (mA)	R _{SET} (kΩ)
5	56.20
10	28.70
15	19.10
20	14.30
25	11.50
30	9.53

Digital Interface & Dimming Control

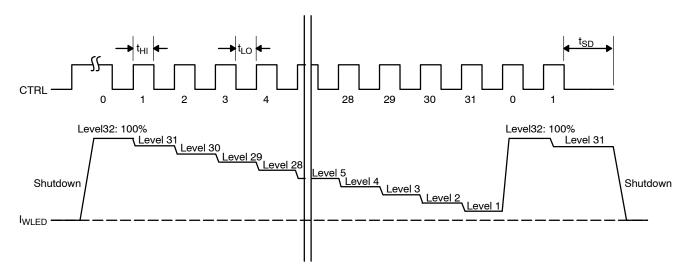
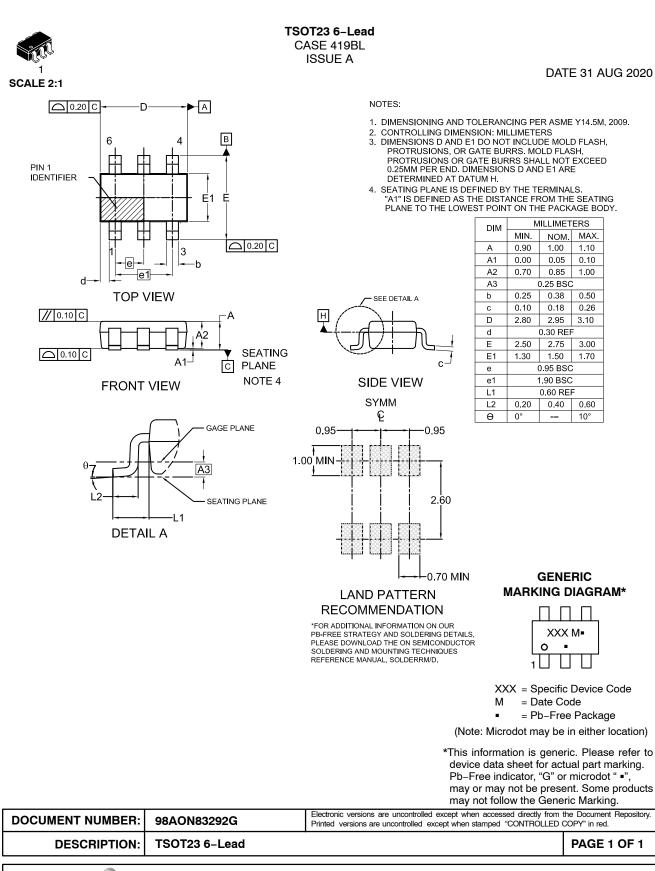

The FAN5622, FAN5624, and FAN5626 implement a simple single-wire digital interface to program the LED brightness to one of thirty two (32) levels spaced in linear steps. To maintain the brightness of the LEDs at a specific dimming level, the digital pulse signal to the CTRL pin should be held HIGH for that last pulse. It is held HIGH for as long as desired to keep the LEDs illuminated at that specific brightness level.

Table 2 outlines the dimming levels while Figure 17 shows how to change the dimming levels.

Table 2. BRIGHTNESS CONTROL LEVELS (R_{SET} = 19.10 k Ω)

Dimming Level	Current Level	I _{LED} (mA)
1	1.67%	0.25
2	3.33%	0.50
3	5.00%	0.75
4	6.67%	1.00
5	10.00%	1.50
6	13.33%	2.00
7	16.67%	2.50
8	20.00%	3.00
9	23.33%	3.50
10	26.67%	4.00
11	30.00%	4.50
12	33.33%	5.00
13	36.67%	5.50
14	40.00%	6.00
15	43.33%	6.50
16	46.67%	7.00
17	50.00%	7.50
18	53.33%	8.00
19	56.67%	8.50
20	60.00%	9.00
21	63.33%	9.50
22	66.67%	10.00
23	70.00%	10.50
24	73.33%	11.00
25	76.67%	11.50
26	80.00%	12.00
27	83.33%	12.50
28	86.67%	13.00
29	90.00%	13.50
30	93.33%	14.00
31	96.67%	14.50
32	100.00%	15.00

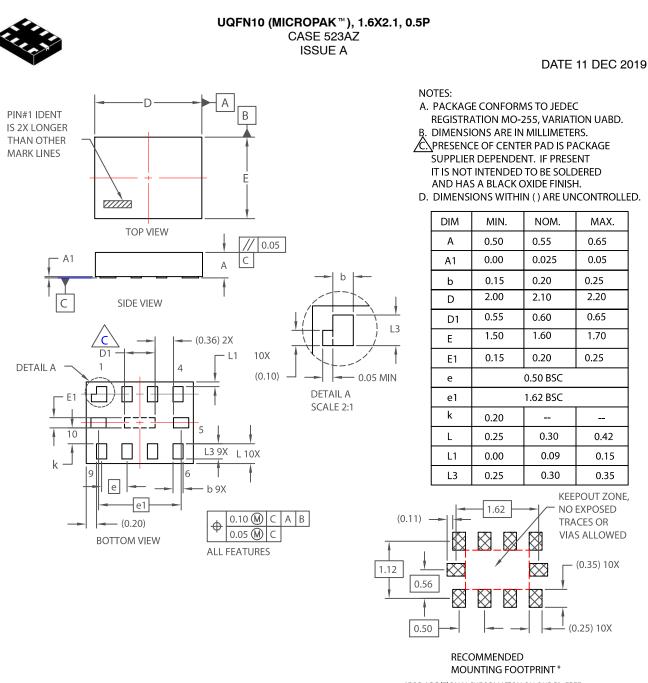
Digital Dimming Control


ORDERING INFORMATION

Part Number	# of Channels	Temperature Range	Package	Shipping [†]
FAN5622SX	2	–40 to 85°C	6–Lead, SUPERSOT [™] 6, JEDEC MO–193, 1.6 mm Wide (Pb–Free)	3000 / Tape & Reel
FAN5624UMPX	4	-40 to 85°C	10-Lead, Ultrathin Molded Leadless Package (UMLP) (Pb-Free)	5000 / Tape & Reel
FAN5626LX	6	–40 to 85°C	10-Lead, MicroPak, JEDEC MO255, 1.6 X 2.1 mm (Pb-Free)	5000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MicroPak and SUPERSOT are trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.



ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

*FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DOCUMENT NUMBER:	98AON13592G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	UQFN10 (MICROPAK™), 1.	.6X2.1, 0.5P PAGE 1 OF 1		
ON Semiconductor and (1) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the				

rights of others.

	CA	10 1.4x1.8, 0.4P ASE 523BC ISSUE O			
0.05 2X PIN#1 IDENT [//0.10 C] [0.08 C] 0.025±.025	$C = 1.40 = A B$ 1.80 1.80 1.80 0.05 $2X$ $0.50\pm.05$ 0 1.05 0				
0.40±.05 - (9X) DETAIL A - PIN#1 IDENT - B(SIDE VIEW $1.40\pm.05$ -(0.20)4X -(0.20)4X -(0.40) -(0.60)4X -(0.60)4X -(0.60)4X $-(0.20\pm.05(1))$	0.30 0.40 0.40 0.40 1. 0.40 0.40 1. 0.40 0.225 0.40 0.40 0.225 0.40 0.40 0.40 0.40 0.40 0.225 0.40 0			
0.40±.05	N 1 OPTION 2	 NOTES: A. PACKAGE DOES NOT CONFORMANY JEDEC STANDARD. B. DIMENSIONS ARE IN MILLIME C. DIMENSIONS AND TOLERANG ASME Y14.5M, 2009. D. LAND PATTERN RECOMMENT EXISTING INDUSTRY LAND PARTICLE PARTICLE PARTICLE PARTICLE PARTICLE PARTICLE PARTICIPARTICLE PARTICIPARTICARTICARTICAR	ETERS. CES PER DATION IS		
SCALE : 2 DOCUMENT NUMBER:	98AON13705G	Electronic versions are uncontrolled except when accessed directly Printed versions are uncontrolled except when stamped "CONTRO			
DESCRIPTION:	UQFN10 1.4x1.8, 0.4P		PAGE 1 OF 1		
ON Semiconductor and 📖 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding					

ON Semiconductor and unarrest of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LED Lighting Drivers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

LV5235V-MPB-H MB39C602PNF-G-JNEFE1 MIC2871YMK-T5 AL1676-10BS7-13 AL1676-20AS7-13 AP5726WUG-7 ICL8201 IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AL3157F-7 AP5725FDCG-7 AP5726FDCG-7 LV52204MTTBG AP5725WUG-7 STP4CMPQTR NCL30086BDR2G CAT4004BHU2-GT3 LV52207AXA-VH AP1694AS-13 TLE4242EJ AS3688 IS31LT3172-GRLS4-TR TLD2311EL KTD2694EDQ-TR KTZ8864EJAA-TR IS32LT3174-GRLA3-TR MP2488DN-LF-Z NLM0010XTSA1 AL1676-20BS7-13 ZXLD1370QESTTC MPQ7220GF-AEC1-P MPQ7220GR-AEC1-P MPQ4425BGJ-AEC1-P MPQ7220GF-AEC1-Z MPQ7220GR-AEC1-Z MPQ4425BGJ-AEC1-Z NCL30486A2DR2G IS31FL3737B-QFLS4-TR IS31FL3239-QFLS4-TR KTD2058EUAC-TR KTD2037EWE-TR DIO5662ST6 IS31BL3508A-TTLS2-TR KTD2026BEWE-TR MAX20052CATC/V+ MAX25606AUP/V+ BD6586MUV-E2 BD9206EFV-E2 BD9416FS-E2 LYT4227E