ON Semiconductor

Is Now

To learn more about onsemi[™], please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

ON Semiconductor®

FAN7380 Half-Bridge Gate Driver

Features

- Floating Channel Designed for Bootstrapping Operation to +600 V
- Typically 90 mA / 180 mA Sourcing/Sinking Current Driving Capability for Both Channels
- Common-Mode dv/dt Noise Cancelling Circuit
- Extended Allowable Negative V_S Swing to -9.8 V for Signal Propagation at V_{CC}=V_{BS}=15 V
- V_{CC} & V_{BS} Supply Range from 10 V to 20 V
- UVLO Functions for Both Channels
- TTL-Compatible Input Logic Threshold Levels
- Matched Propagation Delay Below 50 ns
- Built-in 100 ns Dead-Time Control Function
- Output In-Phase with Input Signal

Typical Applications

- Fluorescent Lamp Ballast
- Compact Fluorescent Lamp Ballast

Related Resources

- http://www.onsemi.com/pub/Collateral/AN-6076.pdf.pdf
- http://www.onsemi.com/pub/Collateral/AN-9052.pdf.pdf
- http://www.onsemi.com/pub/Collateral/AN-8102.pdf.pdf

Description

The FAN7380 is a monolithic half-bridge gate-drive IC for MOSFETs and IGBTs that operate up to +600 V. ON Semiconductor's high-voltage process common-mode noise cancelling technique provide stable operation of high-side driver under high-dv/dt noise circumstances. An advanced level-shift circuit allows high-side gate driver operation up to V_S=-9.8 V (typical) for V_{BS} =15 V. The input logic level is compatible with standard TTL-series logic gates. The internal shoot-through protection circuit provides 100 ns dead-time to prevent output switching devices from both conducting during transition periods. UVLO circuits for both channels prevent malfunction when V_{CC} and V_{BS} are lower than the specified threshold voltage. Output drivers typically source / sink at 90 mA / 180 mA, respectively, which is suitable for fluorescent / compact fluorescent lamp ballast applications and systems requiring low di/dt noise.

8-SOP

Ordering Information

Device	Package	Pb-Free	Operating Temperature	Packing	Description
FAN7380MX ⁽¹⁾	8-SOP	Yes	-40°C ~ +125°C	Tape & Reel	Lighting Application

Note:

1. This device has passed wave soldering test by JESD22A-111.

Typical Application Circuit

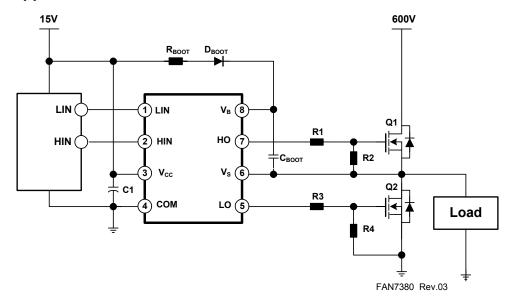


Figure 1. Application Circuit for Fluorescent Lamp Ballast

Internal Block Diagram

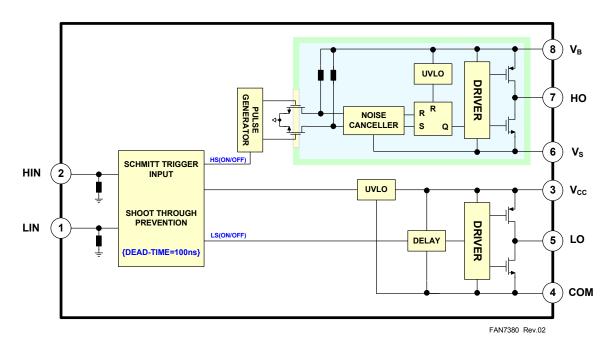


Figure 2. Functional Block Diagram

Pin Configuration

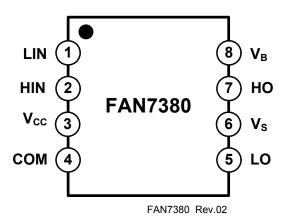


Figure 3. Pin Configuration (Top View)

Pin Definitions

Pin#	Name	I/O	Description
1	LIN	I	Logic Input for Low-Side Gate Driver Output
2	HIN	I	Logic Input for High-Side Gate Driver Output
3	V _{CC}	I	Low-Side Supply Voltage
4	COM		Logic Ground and Low-Side Driver Return
5	LO	0	Low-Side Driver Output
6	V _S	1	High-Voltage Floating Supply Return
7	НО	0	High-Side Driver Output
8	V _B	I	High-Side Floating Supply

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A=25^{\circ}\text{C}$, unless otherwise specified.

Symbol	Parameter	Min.	Max.	Unit
V _S	High-side offset voltage	V _B -25	V _B +0.3	
V _B	High-side floating supply voltage	-0.3	625.0	
V _{HO}	High-side floating output voltage HO	V _S -0.3	V _B +0.3	
V _{CC}	Low-side and logic-fixed supply voltage	-0.3	25.0	V
V_{LO}	Low-side output voltage LO	-0.3	V _{CC} +0.3	
V _{IN}	Logic input voltage (HIN, LIN)	-0.3	V _{CC} +0.3	
COM	Logic ground	V _{CC} -25	V _{CC} +0.3	
dV _S /dt	Allowable offset voltage slew rate		50	V/ns
P _D ⁽²⁾⁽³⁾⁽⁴⁾	Power dissipation		0.625	W
$\theta_{\sf JA}$	Thermal resistance, junction-to-ambient		200	°C/W
T _J	Junction temperature		150	°C
T _S	Storage temperature	-50	150	°C

Notes:

- 2. Mounted on 76.2 x 114.3 x 1.6 mm PCB (FR-4 glass epoxy material).
- 3. Refer to the following standards:
 - JESD51-2: Integral circuits thermal test method environmental conditions natural convection JESD51-3: Low effective thermal conductivity test board for leaded surface mount packages
- 4. Do not exceed P_D under any circumstances.

Recommended Operating Ratings

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _B	High-side floating supply voltage	V _S +10	V _S +20	
V _S	High-side floating supply offset voltage	6-V _{CC}	600	
V _{HO}	High-side (HO) output voltage	V _S	V _B	V
V_{LO}	Low-side (LO) output voltage	COM	V _{CC}	V
V _{IN}	Logic input voltage (HIN, LIN)	COM	V _{CC}	
V _{CC}	Low-side supply voltage	10	20	
T _A	Ambient temperature	-40	125	°C

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15.0 V, T_A = 25°C, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to V_S and COM and are applicable to the respective outputs HO and LO.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
V _{CCUV} + V _{BSUV} +	V _{CC} & V _{BS} supply under-voltage positive going threshold		8.2	9.2	10.0		
V _{CCUV} - V _{BSUV} -	V _{CC} & V _{BS} supply under-voltage negative going threshold		7.6	8.7	9.6	V	
V _{CCUVH} V _{BSUVH}	V _{CC} supply under-voltage lockout hysteresis			0.5			
I _{LK}	Offset supply leakage current	V _B =V _S =600 V			50		
I _{QBS}	Quiescent V _{BS} supply current	V _{IN} =0 V or 5 V		44	100	μΑ	
I _{QCC}	Quiescent V _{CC} supply current	V _{IN} =0 V or 5 V		70	180		
I _{PBS}	Operating V _{BS} supply current	f _{IN} =20 kHz, rms value			600		
I _{PCC}	Operating V _{CC} supply current	f _{IN} =20 kHz, rms value			610	μA	
V _{IH}	Logic "1" input voltage		2.5			V	
V _{IL}	Logic "0" input voltage				0.8	V	
V _{OH}	High-level output voltage, V _{BIAS} -V _O	1 =20 mA			2.8	V	
V _{OL}	Low-level output voltage, V _O	I _O =20 mA			1.2	V	
I _{IN+}	Logic "1" input bias current	V _{IN} =5 V		5	40		
I _{IN-}	Logic "0" input bias current	V _{IN} =0 V		1.0	2.0	μA	
I _{O+}	Output HIGH short-circuit pulse current	V_O =0 V, V_{IN} =5 V with PW \leq 10 μ s	60	90			
I _{O-}	Output LOW short-circuit pulsed current	V _O =15 V,V _{IN} =0 V with PW≤10 µs	130	180		mA	
V _S	Allowable negative V _S pin voltage for HIN signal propagation to HO			-9.8	-7.0	٧	

Dynamic Electrical Characteristics

 $V_{BIAS}(V_{CC}, V_{BS})$ = 15.0 V, V_{S} = COM, C_{L} = 1000 pF and T_{A} = 25°C, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{on}	Turn-on propagation delay	V _S =0 V	70	135	200	
t _{off}	Turn-off propagation delay	V _S =0 V or 600 V ⁽⁵⁾	60	130	190	
t _r	Turn-on rise time		160	230	290	ne
t _f	Turn-off fall time		20	90	160	ns
DT	Dead time		80	120	190	
MT	Delay matching, HS & LS turn-on/off				50	

Note:

5. This parameter guaranteed by design.

Typical Performance Characteristics

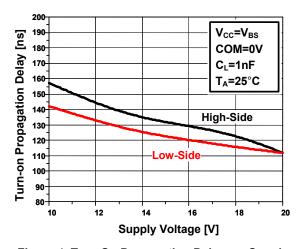


Figure 4. Turn-On Propagation Delay vs. Supply Voltage

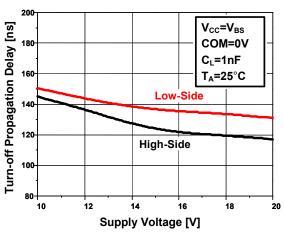


Figure 6. Turn-Off Propagation Delay vs. Supply Voltage

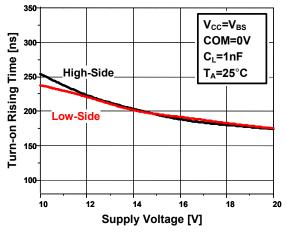


Figure 8. Turn-On Rising Time vs. Supply Voltage

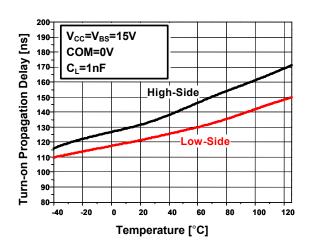


Figure 5. Turn-On Propagation Delay vs. Temp.

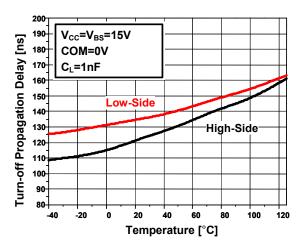


Figure 7. Turn-Off Propagation Delay vs. Temp.

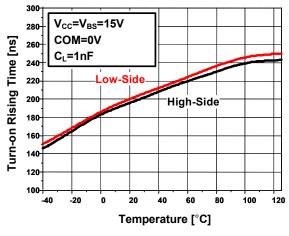


Figure 9. Turn-On Rising Time vs. Temp.

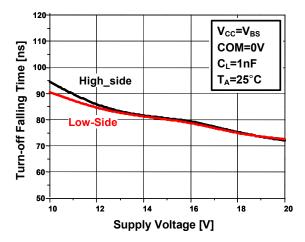


Figure 10. Turn-Off Falling Time vs. Supply Voltage

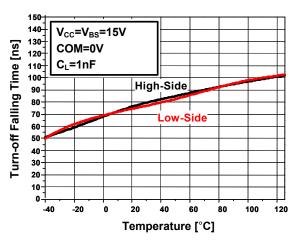


Figure 11. Turn-Off Falling Time vs. Temp.

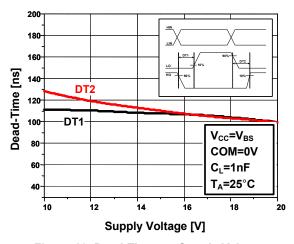


Figure 12. Dead-Time vs. Supply Voltage

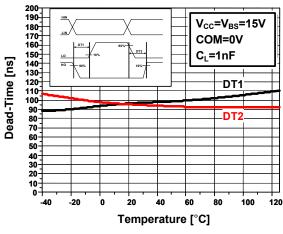


Figure 13. Dead-Time vs. Temp.

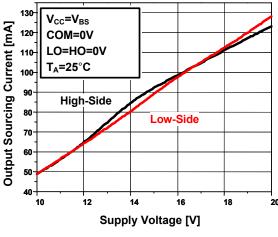


Figure 14. Output Sourcing Current vs. Supply Voltage

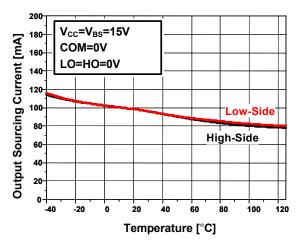


Figure 15. Output Sourcing Current vs. Temp.

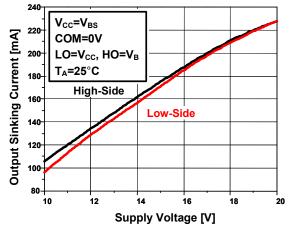


Figure 16. Output Sinking Current vs. Supply Voltage

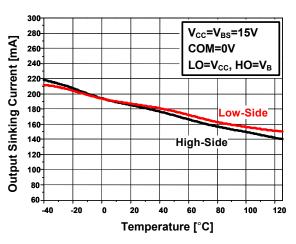


Figure 17. Output Sinking Current vs. Temp.

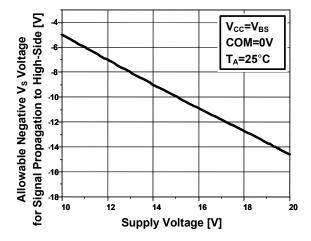


Figure 18. Allowable Negative V_S Voltage for Signal Propagation to High-Side vs. Supply Voltage

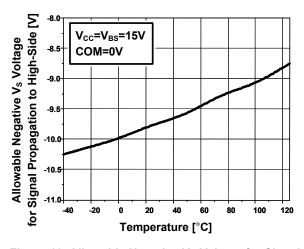


Figure 19. Allowable Negative V_S Voltage for Signal Propagation to High-Side vs. Temperature

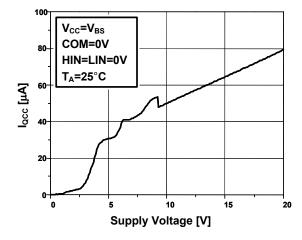


Figure 20. I_{QCC} vs. Supply Voltage

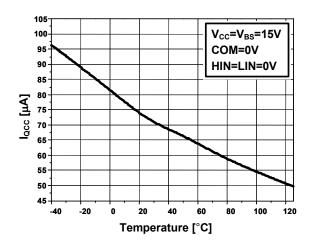


Figure 21. I_{QCC} vs. Temperature

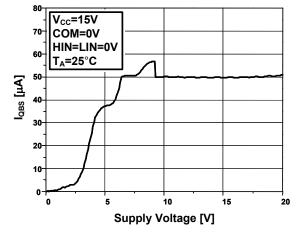


Figure 22. I_{OBS} vs. Supply Voltage

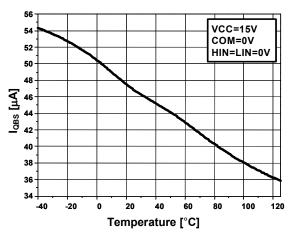


Figure 23. I_{OBS} vs. Temperature

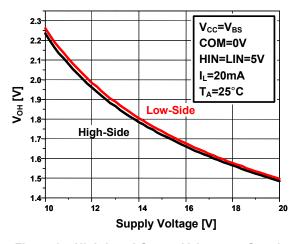


Figure 24. High-Level Output Voltage vs. Supply Voltage

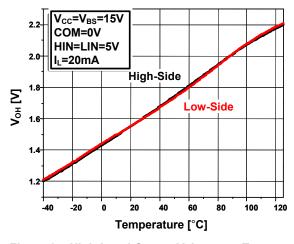


Figure 25. High-Level Output Voltage vs. Temp.

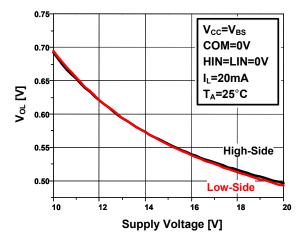


Figure 26. Low-Level Output Voltage vs. Supply Voltage

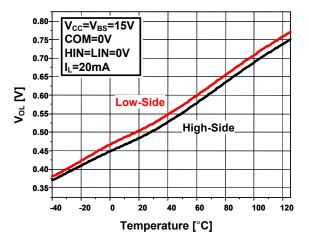


Figure 27. Low-Level Output Voltage vs. Temp.

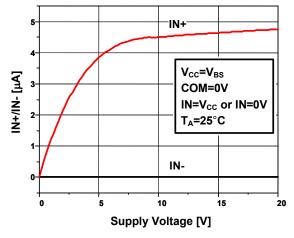


Figure 28. Input Bias Current vs. Supply Voltage

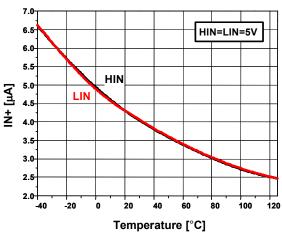


Figure 29. Input Bias Current vs. Temperature

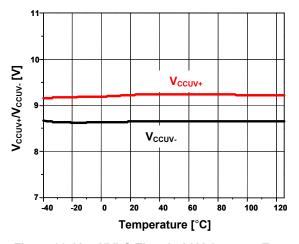


Figure 30. V_{CC} UVLO Threshold Voltage vs. Temp.

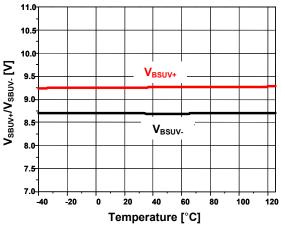


Figure 31. V_{BS} UVLO Threshold Voltage vs. Temp.

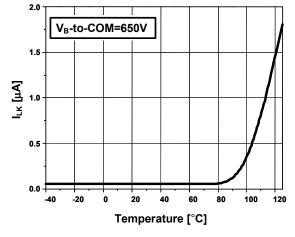


Figure 32. VB to COM Leakage Current vs. Temp.

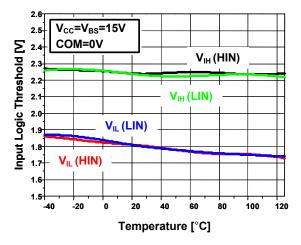
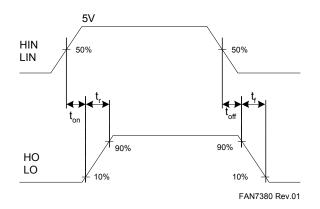



Figure 33. Input Logic Threshold vs. Temp.

Switching Time Definitions

HIN 50% 50% LIN LO НО 90% FAN7380 Rev.01

Figure 34. Switching Time Waveforms

Figure 35. Internal Dead-Time Timing

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gate Drivers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

89076GBEST 00053P0231 56956 57.404.7355.5 LT4936 57.904.0755.0 5882900001 00600P0005 00-9050-LRPP 00-9090-RDPP
5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP
00-8275-RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 0207400000
01312 0134220000 60713816 M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P
6131-220-21149P 6131-260-2358P 6131-265-11149P