High-Current, Half-Bridge, Gate-Driver IC

FAN73912

Description

The FAN73912 is a monolithic half bridge gate-drive IC designed for high-voltage and high-speed driving for MOSFETs and IGBTs that operate up to +1200 V .

The advanced input filter of HIN provides protection against short-pulsed input signals caused by noise.

An advanced level-shift circuit offers high-side gate driver operation up to $\mathrm{VS}=-9.8 \mathrm{~V}$ (typical) for $\mathrm{VBS}=15 \mathrm{~V}$. The UVLO circuit prevents malfunction when VCC and VBS are lower than the specified threshold voltage.

Output drivers typically source and sink 2 A and 3 A , respectively.

Features

- Floating Channel for Bootstrap Operation to +1200 V
- Typically 2 A/ 3 A Sourcing/Sinking Current Driving Capability for Both Channels
- Gate Driver Supply (VCC) Range from 12 V to 20 V
- Separate Logic Supply (VDD) Range from 3 V to 20 V
- Extended Allowable Negative VS Swing to -9.8 V for Signal Propagation at $\mathrm{VCC}=\mathrm{VBS}=15 \mathrm{~V}$
- Built-in Cycle-by-Cycle Edge-Triggered Shutdown Logic
- Built-in Shoot-Through Protection Logic
- Common-Mode dv/dt Noise Canceling Circuit
- UVLO Functions for Both Channels
- Built-in Advanced Input Filter
- Matched Propagation Delay Below 50 ns
- Outputs in-Phase with Input Signal
- Logic and Power Ground +/- 10 V Offset
- This Device is $\mathrm{Pb}-$ Free and Halogen Free

Typical Application

- Electrical Contactor
- UPS
- Solar Inverter
- Ballast
- General-Purpose Half-Bridge Topology

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

SOIC-16W
CASE 751BH

MARKING DIAGRAM

$\$ Y$	$=$ ON Semiconductor Logo
$\& Z$	$=$ Assembly Plant Code
$\& 2$	$=2-$ Digit Date Code
\&K	$=$ Lot Code
FAN73912MX	$=$ Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping †
FAN73912MX (Note 1)	Wide-16	$1,000 /$
SOIC	Tape \& Reel	

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

1. This device passed wave-soldering test by JESD22A-111

Figure 1. Application Schematic - Adjustable Option

Figure 2. Simplified Block Diagram

Figure 3. Pin Connections - Wide 16-SOIC
(Top View)

Table 1. PIN FUNCTION DESCRIPTION

Pin No.	Symbol	
1	LO	Low-Side Driver Output
2	COM	Low-Side Driver Return
3	VCC	Low-Side Supply Voltage
4	NC	No Connection
5	NC	No Connection
6	V $_{\text {S }}$	High-Voltage Floating Supply Return
7	V $_{\text {B }}$	High-Side Floating Supply
8	HO	High-Side Driver Output
9	NC	No Connection
10	NC	No Connection
11	VDD	Logic Supply Voltage
12	HIN	Logic Input for High-Side Gate Driver Output
13	SD	Logic Input for Shutdown
14	LIN	Logic Input for Low-Side Gate Driver Output
15	VSS	Logic Ground
16	NC	No Connection

Table 2. MAXIMUM RATINGS $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified. All voltage parameters are referenced to COM unless otherwise stated in the table.)

Symbol	Parameter	Min	Max	Unit
V_{B}	High-Side Floating Supply Voltage	-0.3	1225.0	V
$\mathrm{~V}_{\mathrm{S}}$	High-Side Floating Offset Voltage	$\mathrm{V}_{\mathrm{B}}-25$	$\mathrm{~V}_{\mathrm{B}}+0.3$	V
$\mathrm{~V}_{\mathrm{HO}}$	High-Side Floating Output Voltage	$\mathrm{V}_{\mathrm{S}}-0.3$	$\mathrm{~V}_{\mathrm{B}}+0.3$	V
$\mathrm{~V}_{\mathrm{CC}}$	Low-Side Supply Voltage	-0.3	25	V
$\mathrm{~V}_{\mathrm{LO}}$	Low-Side Floating Output Voltage	-0.3	$\mathrm{~V}_{\mathrm{CC}}+.0 .3$	V
$\mathrm{~V}_{\mathrm{DD}}$	Logic Supply Voltage	$\mathrm{V}_{\mathrm{SS}}-0.3$	$\mathrm{~V}_{\mathrm{SS}}+25$	V
$\mathrm{~V}_{\mathrm{SS}}$	Logic GND	-0.3	$\mathrm{~V}_{\mathrm{DD}}-25$	$\mathrm{~V}_{\mathrm{DD}}+0.3$
$\mathrm{~V}_{\mathrm{IN}}$	Logic Input Voltage (HIN, LIN and SD)	$\mathrm{V}_{\mathrm{SS}}+\mathrm{V}_{\mathrm{DD}}-25.3$	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{dV}_{\mathrm{S}} / \mathrm{dt}$	Allowable Offset Voltage Slew Rate	-0.3	V	
P_{D}	Power Dissipation	-	± 50	$\mathrm{~V} / \mathrm{ns}$
$($ Note $2,3,4)$		-	1.3	W
θ_{JA}	Thermal Resistance	-	95	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{J}	Junction Temperature	-	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage Temperature	-55	150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
2. Mounted on $76.2 \times 114.3 \times 1.6 \mathrm{~mm}$ PCB (FR-4 glass epoxy material).
3. Refer to the following standards:

JESD51-2: Integral circuit's thermal test method environmental conditions, natural convection;
JESD51-3: Low effective thermal conductivity test board for leaded surface-mount packages.
4. Do not exceed maximum power dissipation (P_{D}) under any circumstances.

Table 3. RECOMMENDED OPERATING CONDITIONS (All voltage parameters are referenced to COM unless otherwise stated in the table)

Symbol	Parameter	Min	Max	Unit
V_{B}	High-Side Floating Supply Voltage	$\mathrm{V}_{\mathrm{S}}+12$	$\mathrm{~V}_{\mathrm{S}}+20$	V
$\mathrm{~V}_{\mathrm{S}}$	High-Side Floating Supply Offset Voltage (Note 6)	$8-\mathrm{V}_{\mathrm{CC}}$	1200	V
$\mathrm{~V}_{\mathrm{HO}}$	High-Side (HO) Output Voltage	V_{S}	V_{B}	V
V_{CC}	Low-Side Supply Voltage	12	20	V
$\mathrm{~V}_{\mathrm{LO}}$	Low-Side (LO) Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{DD}	Logic Supply Voltage	$\mathrm{V}_{\mathrm{SS}}+3$	$\mathrm{~V}_{\mathrm{SS}}+20$	V
$\mathrm{~V}_{\mathrm{SS}}$	Logic Ground (Note 5)	-10	10	V
$\mathrm{~V}_{\mathrm{IN}}$	Logic Input Voltage (HIN, LIN, SD)	$\mathrm{V}_{\mathrm{SS}}+\mathrm{V}_{\mathrm{DD}}-20$	$\mathrm{~V}_{\mathrm{DD}}$	V
T_{J}	Junction Temperature	-40	+125	${ }^{\circ} \mathrm{C}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
5. When $\mathrm{V}_{\mathrm{DD}}<10 \mathrm{~V}$, the minimum V_{SS} offset is limited to $-\mathrm{V}_{\mathrm{DD}}$.
6. Referenced to $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Table 4. STATIC ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{BIAS}}\left(\mathrm{V}_{C C}, \mathrm{~V}_{\mathrm{BS}}, \mathrm{V}_{\mathrm{DD}}\right)=15.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified. The $\mathrm{V}_{I H}, \mathrm{~V}_{I L}$ and I_{IN} parameters are referenced to $\mathrm{V}_{S S}$ and are applicable to respective input leads: $\mathrm{HIN}, \mathrm{LIN}$ and SD. The V_{O} and I_{0} parameters are referenced to V_{S} and COM and are applicable to the respective output leads: HO and LO. The $\mathrm{V}_{\text {DDUV }}$ parameters are referenced to COM . The $\mathrm{V}_{\mathrm{BSUV}}$ parameters are referenced to $\mathrm{V}_{\mathrm{S} 1,2,3}$.)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
LOW-SIDE POWER SUPPLY SECTION						
$\mathrm{I}_{\text {QCC }}$	Quiescent $\mathrm{V}_{\text {CC }}$ Supply Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V_{DD}	-	170	300	$\mu \mathrm{A}$
$\mathrm{I}_{\text {QDD }}$	Quiescent $\mathrm{V}_{\text {DD }}$ Supply Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V_{DD}	-	-	10	$\mu \mathrm{A}$
IPCC	Operating V_{CC} Supply Current	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz}$, rms $\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}_{\mathrm{PP}}$	-	650	950	$\mu \mathrm{A}$
IPDD	Operating V_{DD} Supply Current	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz}$, rms $\mathrm{V}_{\mathrm{IN}}=15 \mathrm{VPP}$	-	2	-	
$\mathrm{I}_{\text {SD }}$	Shutdown Supply Current	$\mathrm{S}_{\mathrm{D}}=\mathrm{V}_{\mathrm{DD}}$	-	30	50	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CCuV }+}$	VCC Supply Under-Voltage Positive-Going Threshold Voltage	$\mathrm{V}_{\text {CC }}=$ Sweep	9.7	11.0	12	V
$\mathrm{V}_{\text {CCuV- }}$	$\mathrm{V}_{C C}$ Supply Under-Voltage Negative-Going Threshold Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Sweep	9.2	10.5	11.4	V
$\mathrm{V}_{\text {CCUVH }}$	$\mathrm{V}_{\text {CC }}$ Supply Under-Voltage Lockout Hysteresis Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Sweep	-	0.5	-	V

BOOTSTRAPPED SUPPLY SECTION

$\mathrm{I}_{\text {QBS }}$	Quiescent $\mathrm{V}_{\text {BS }}$ Supply Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V_{DD}	-	50	100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {PBS }}$	Operating $\mathrm{V}_{\text {BS }}$ Supply Current	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz}$, rms value	-	550	850	$\mu \mathrm{A}$
$\mathrm{V}_{\text {BSUV+ }}$	$V_{B S}$ Supply Under-Voltage Positive-Going Threshold Voltage	$\mathrm{V}_{\text {BS }}=$ Sweep	9.7	11.0	12.0	V
$\mathrm{V}_{\text {BSUV- }}$	$V_{B S}$ Supply Under-Voltage Negative-Going Threshold Voltage	$\mathrm{V}_{\mathrm{BS}}=$ Sweep	9.2	10.5	11.4	V
$\mathrm{V}_{\text {BSUVH }}$	$V_{B S}$ Supply Under-Voltage Lockout Hysteresis Voltage	$\mathrm{V}_{\mathrm{BS}}=$ Sweep	-	0.5	-	V
ILK	Offset Supply Leakage Current	$\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{S}}=1200 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)$	-	-	50	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{S}}=1200 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\right)$ (Note 7)	-	-	100	
		$\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{S}}=1100 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\right)$ (Note 7)	-	-	100	

INPUT LOGIC SECTION (HIN.LIN AND AD)

V_{IH}	Logic "1" Input Voltage	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	2.4	-	-	V
		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$	9.5	-	-	
$\mathrm{V}_{\text {IL }}$	Logic "0" Input Voltage	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	-	-	0.8	V
		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$	-	-	6.0	
$\mathrm{I}_{\mathrm{N}+}$	Logic "1" Input bias Current	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$	-	30	50	$\mu \mathrm{A}$
In-	Logic "0" Input bias Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
RIN	Logic Input Pull-down Resistance		-	500	-	k Ω

GATE DRIVER OUTPUT SECTION

V_{OH}	High-Level Output Voltage, $\mathrm{V}_{\text {BIAS }}-\mathrm{V}_{\mathrm{O}}$	$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$	-	-	1.2	V
$\mathrm{~V}_{\mathrm{OL}}$	Low-Level Output Voltage, V_{O}	$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$	-	-	0.1	V
$\mathrm{I}_{\mathrm{O}+}$	Output HIGH Short-Circuit Pulse Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}$ with $\mathrm{PW} \leq 10 \mu \mathrm{~s}$	-	2.0	-	A
$\mathrm{I}_{\mathrm{O}-}$	Output LOW Short-Circuit Pulsed Current	$\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ with $\mathrm{PW} \leq 10 \mu \mathrm{~s}$	-	3.0	-	A
V_{S}	Allowable Negative V_{S} Pin Voltage for HIN Signal Propagation to HO		-	-9.8	-7.0	V

7. These parameters are guaranteed by design.

Table 5. DYNAMIC ELECTRICAL CHARACTERISTICS $\left(V_{B I A S}\left(V_{C C}, V_{B S}, V_{D D}\right)=15.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}}=C O M, C_{\mathrm{L}}=1000 \mathrm{pF}\right.$ and $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Typ	Max	Units

LOW-SIDE POWER SUPPLY SECTION

t_{ON}	Turn-On Propagation Delay	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$	-	500	-	ns
$\mathrm{t}_{\mathrm{OFF}}$	Turn-Off Propagation Delay	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$	-	550	-	ns
$\mathrm{t}_{\mathrm{FLTIN}}$	Input Filtering Time (HIN, LIN) (Note 8)		80	150	220	ns
$\mathrm{t}_{\text {FLTSD }}$	Input Filtering Time (SD)		-	30	-	ns
t_{SD}	Shutdown Propagation Delay Time		260	330	400	ns
t_{R}	Turn-On Rise Time		-	25	-	ns
t_{F}	Turn-Off Fall Time		-	15	-	
DT	Dead Time					
MDT	Dead Time Matching (Note 9)		-	-	50	ns
MT	Delay Matching, HO \& LO Turn-On/OFF (Note 10)		50	100	ns	
PM	Output Pulse-Width Matching (Note 11)	PWIN $>1 \mu \mathrm{~S}$				

[^0]
TYPICAL CHARACTERISTICS

Figure 4. Turn-On Propagation Delay vs. Temperature

Figure 6. Turn-On Rise Time vs Temperature

Figure 8. Turn-On Delay Matching vs. Temperature

Figure 5. Turn-Off Propagation Delay vs. Temperature

Figure 7. Turn-Off Fall Time vs. Temperature

Figure 9. Turn-Off Delay Matching
vs. Temperature

TYPICAL CHARACTERISTICS (continued)

Figure 10. Shutdown Propagation Delay
vs. Temperature

Figure 12. Quiescent $V_{C C}$ Supply Current vs. Temperature

Figure 14. Quiescent V_{BS} Supply Current vs. Temperature

Figure 11. Logic Input High Bias Current vs. Temperature

Figure 13. Quiescent V_{DD} Supply Current vs. Temperature

Figure 15. Operating V_{Cc} Supply Current vs. Temperature

TYPICAL CHARACTERISTICS (continued)

Figure 16. Operating VDD Supply Current vs. Temperature

Figure 18. V_{Cc} UVLO+ vs. Temperature

Figure 20. V_{BS} UVLO+ vs. Temperature

Figure 17. Operating V_{BS} Supply Current vs. Temperature

Figure 19. V Cc UVLO- vs. Temperature

Figure 21. V $_{\text {BS }}$ UVLO- vs. Temperature

TYPICAL CHARACTERISTICS (continued)

Figure 22. High-Level Output Voltage vs. Temperature

Figure 24. Logic High Input Voltage vs. Temperature

Figure 26. Allowable Negative $\mathbf{V}_{\mathbf{S}}$ vs. Temperature

Figure 23. Low-Level Output Voltage vs. Temperature

Figure 25. Logic Low Input Voltage vs. Temperature

Figure 27. Input Logic (HIN\&LIN) Threshold Voltage vs. VDD Supply Voltage

TYPICAL CHARACTERISTICS (continued)

Figure 28. Allowable Negative $\mathrm{V}_{\mathbf{S}}$ Voltage for HIN Signal Propagation to High Side vs. Vcc Supply Voltage

Figure 30. Turn-Off Propagation Delay vs. $V_{D D}$ Supply Voltage

Figure 32. Shutdown Input Filtering Time
vs. VDD Supply Voltage

Figure 29. Turn-On Propagation Delay vs. VDD Supply Voltage

Figure 31. Logic Input Filtering Time vs. $V_{D D}$ Supply Voltage

Figure 33. Shutdown Propagation Delay vs. VDD Supply Voltage

TYPICAL CHARACTERISTICS (continued)

Figure 34. Dead Time vs. $V_{\text {DD }}$ Supply Voltage

Figure 36. Output Pulse-Width Matching vs. $V_{D D}$ Supply Voltage

Figure 35. Dead-Time Matching vs. VDD Supply Voltage

SWITCHING TIME DEFINITIONS

Figure 37. Switching Time Test Circuit

Figure 38. Input/Output Timing Diagram

Figure 39. Switching Time Definition

FAN73912

SWITCHING TIME DEFINITIONS (continued)

Figure 40. Internal Dead Time Definition

Figure 41. Switching Time Waveform Definitions

Figure 42. Switching Time Definitions

APPLICATIONS INFORMATION

Dead Time

Dead time is automatically inserted whenever the dead time of the external two input signals (between HIN and LIN signals) is shorter than internal fixed dead times (DT1 and DT2). Otherwise, external dead times larger than internal dead times are not modified by the gate driver and internal dead-time waveform definition is shown in Figure 43.

Figure 43. Internal Dead-Time Definitions

Protection Function

Shoot-Through Protection

The shoot-through protection circuitry prevents both high- and low-side switches from conducting at the same time, as shown in Figure 44.

Figure 44. Shoot-Through Protection

Shutdown Input

When the SD pin is in LOW state, the gate driver operates normally. When a condition occurs that should shut down the gate driver, the SD pin should be HIGH. The Shutdown circuitry has an input filter; the minimum input duration is specified by trLTIN (typically 250 ns).

Figure 45. Output Shutdown Timing Waveform

Noise Filter

Input Noise Filter

Figure 46 shows the input noise filter method, which has symmetry duration between the input signal (t INPUT) and the output signal (toUTPUT) and helps to reject noise spikes and short pulses. This input filter is applied to the HIN, LIN, and EN inputs. The upper pair of waveforms (Example A) shows an input signal duration ($\mathrm{t}_{\text {INPUT }}$) much longer than input filter time ($\mathrm{t}_{\text {FLTIN }}$); it is approximately the same duration between the input signal time ($\mathrm{t}_{\text {INPUT }}$) and the output signal time ($\mathrm{t}_{\text {OUTPUT }}$). The lower pair of waveforms (Example B) shows an input signal time ($\mathrm{t}_{\text {INPUT }}$) slightly longer than input filter time ($\mathrm{t}_{\text {FLTIN }}$); it is approximately the same duration between input signal time ($\mathrm{t}_{\text {INPUT }}$) and the output signal time (touTput).

Figure 46. Input Noise Filter Definition

Short-Pulsed Input Noise Rejection Method

The input filter circuitry provides protection against short-pulsed input signals (HIN, LIN, and SD) on the input signal lines by applied noise signal. If the input signal duration is less than input filter time ($\mathrm{t}_{\text {FLTIN }}$), the output does not change states. Example A and B of the Figure 47 show the input and output waveforms with short-pulsed noise spikes with a duration less than input filter time; the output does not change states.

Figure 47. Noise Rejecting Input Filter Definition

Negative VS Transient

The bootstrap circuit has the advantage of being simple and low cost, but has some limitations. The biggest difficulty with this circuit is the negative voltage present at the emitter of the high-side switching device when high-side switch is turned-off in half-bridge application. If the high-side switch, Q1, turns-off while the load current is flowing to an inductive load, a current commutation occurs from high-side switch, Q1, to the diode, D2, in parallel with the low-side switch of the same inverter leg. Then the negative voltage present at the emitter of the high-side switching device, just before the freewheeling diode, D2, starts clamping, causes load current to suddenly flow to the low-side freewheeling diode, D2, as shown in Figure 48.

Figure 48. Half-Bridge Application Circuits

This negative voltage can be trouble for the gate driver's output stage, there is the possibility to develop an overvoltage condition of the bootstrap capacitor, input signal missing and latch-up problems because it directly affects the source VS pin of the gate driver, shown in Figure 49. This undershoot voltage is called "negative VS transient".

Figure 49. $\mathbf{V}_{\mathbf{S}}$ Waveforms during Q1 Turn-Off

Figure 50 and Figure 51 show the commutation of the load current between high-side switch, Q1, and low-side freewheeling diode, D3, in same inverter leg. The parasitic inductances in the inverter circuit from the die wire bonding to the PCB tracks are jumped together in L_{C} and L_{E} for each IGBT. When the high-side switch, Q1, and low-side switch, Q4, are turned on, the $\mathrm{V}_{\mathrm{S} 1}$ node is below $\mathrm{DC}+$ voltage by the voltage drops associated with the power switch and the parasitic inductances of the circuit due to load current is flows from Q1 and Q4, as shown in Figure 50. When the high-side switch, Q1, is turned off and Q4, remained turned on, the load current to flows the low-side freewheeling diode, D3, due to the inductive load connected to VS1 as shown in Figure 51. Q1 Turn-Off and D3 Conducting. The current flows from ground (which is connected to the COM pin of the gate driver) to the load and the negative voltage present at the emitter of the high-side switching device. In this case, the COM pin of the gate driver is at a higher potential than the V_{S} pin due to the voltage drops associated with freewheeling diode, D 3 , and parasitic elements, $\mathrm{L}_{\mathrm{C} 3}$ and $\mathrm{L}_{\mathrm{E} 3}$.

Figure 50. Q1 and Q4 Turn-On

Figure 51. Q1 Turn-Off and D3 Conducting

The FAN73912 has a typical negative VS transient characteristics, as shown in Figure 52.

Figure 52. Negative $\mathrm{V}_{\mathbf{S}}$ Transient Characteristic

Even though the FAN73912 has been shown able to handle these negative V_{S} transient conditions, it is strongly recommended that the circuit designer limit the negative VS transient as much as possible by careful PCB layout to minimize the value of parasitic elements and component use. The amplitude of negative V_{S} voltage is proportional to the parasitic inductances and the turn-off speed, di/dt, of the switching device.

General Guidelines

Printed Circuit Board Layout

The layout recommended for minimized parasitic elements is as follows:

- Direct tracks between switches with no loops or deviation.
- Avoid interconnect links. These can add significant inductance.
- Reduce the effect of lead-inductance by lowering package height above the PCB.
- Consider co-locating both power switches to reduce track length.
- To minimize noise coupling, the ground plane should not be placed under or near the high-voltage floating side.
- To reduce the EM coupling and improve the power switch turn-on/off performance, the gate drive loops must be reduced as much as possible.

Placement of Components

The recommended placement and selection of component as follows:

- Place a bypass capacitor between the V_{CC} and V_{SS} pins. A ceramic $1 \mu \mathrm{~F}$ capacitor is suitable for most applications. This component should be placed as close as possible to the pins to reduce parasitic elements.
- The bypass capacitor from V_{CC} to V_{SS} supports both the low-side driver and bootstrap capacitor recharge. A value at least ten times higher than the bootstrap capacitor is recommended.
- The bootstrap resistor, $\mathrm{R}_{\text {BOOt, }}$, must be considered in sizing the bootstrap resistance and the current developed during initial bootstrap charge. If the resistor is needed in series with the bootstrap diode, verify that V_{B} does not fall below COM (ground). Recommended use is typically $5 \sim 10 \Omega$ that increase the V_{BS} time constant. If the voltage drop of bootstrap resistor and diode is too high or the circuit topology does not allow a sufficient charging time, a fast recovery or ultra-fast recovery diode can be used.
- The bootstrap capacitor, C $_{\text {BOOT }}$, uses a low-ESR capacitor, such as ceramic capacitor. It is strongly
recommended that the placement of components is as follows:
- Place components tied to the floating voltage pins (V_{B} and V_{S}) near the respective high-voltage portions of the device and the FAN73912. Not Connected (NC) pins in this package maximize the distance between the high-voltage and low-voltage pins (see Figure 3).
- Place and route for bypass capacitors and gate resistors as close as possible to gate drive IC.
- Locate the bootstrap diode, $\mathrm{D}_{\text {BOot }}$, as close as possible to bootstrap capacitor, С $_{\text {воот }}$.
- The bootstrap diode must use a lower forward voltage drop and minimal switching time as soon as possible for fast recovery or ultra-fast diode.

TOP VIEW

SIDE VIEW

SYMBOL	MIN	NOM	MAX
A	2.36	2.49	2.64
A1	0.10		0.30
b	0.33	0.41	0.51
c	0.18	0.23	0.28
D	10.08	10.31	10.49
E	10.01	10.31	10.64
E1	7.39	7.49	7.59
e	1.27 BSC		
h	0.25		0.75
L	0.38	0.81	1.27
θ	0°		8°

END VIEW

Notes:

(1) All dimensions are in millimeters. Angles in degrees.
(2) Complies with JEDEC MS-013.

DOCUMENT NUMBER:	98AON34279E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-16, 300 MILS		PAGE 1 OF 1

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
 5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 02071000000207400000 $01312 \underline{0134220000} \underline{60713816}$ M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P

[^0]: 8. The minimum width of the input pulse should exceed 500 ns to ensure the filtering time of the input filter is exceeded.
 9. MDT is defined as $\mid \mathrm{DT}_{\text {HO-LO }}$ DT $_{\text {LO-HO }} \mid$ referenced to Figure 40.
 10. MT is defined as an absolute value of matching delay time between High-side and Low-Side.
 11. PM is defined as an absolute value of matching pulse-width between Input and Output.
