

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

April 2013

FAN7527B Power Factor Correction Controller

Features

- Internal Startup Timer
- Internal R/C Filter Eliminates the Need for External R/C Filter
- Precise Adjustable Output Over-Voltage Protection
- Zero Current Detector
- One Quadrant Multiplier
- Trimmed 1.5% Internal Band Gap Reference
- Under-Voltage Lockout with 3 V of Hysteresis
- Totem-Pole Output with High-State Clamp
- Low Startup and Operating Current
- 8-Pin SOP or 8-Pin DIP

Applications

- Electronic Ballast
- SMPS

Description

The FAN7527B provides simple and high-performance active Power Factor Correction (PFC). The FAN7527B is optimized for electronic ballasts and low-power, high-density power supplies that require minimum board size, reduced external components, and low power dissipation. Because the R/C filter is included in the current-sense block, an external R/C filter is not necessary. Special circuitry prevents no-load runaway conditions. Regardless of the supply voltage, the output drive clamping circuit limits the overshoot of the power MOSFET gate drive, which improves system reliability.

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method	
FAN7527BMX	7527BMX -25 to +125°C 8-Lead, Small Outline Package (SOP)		Tape and Reel	
FAN7527BN	-25 to +125°C	8-Lead, Dual Inline Package (DIP)	Tube	

Block Diagram

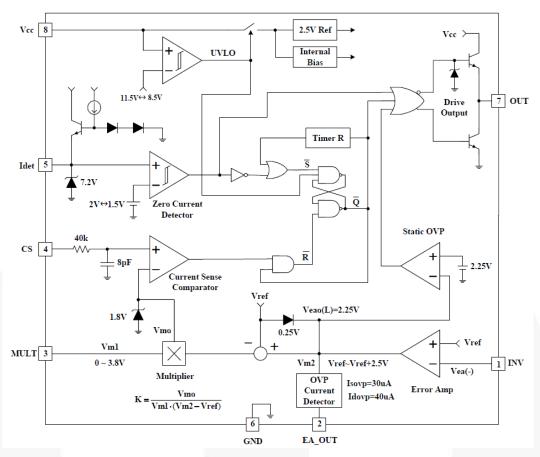


Figure 1. Block Diagram

Pin Configuration

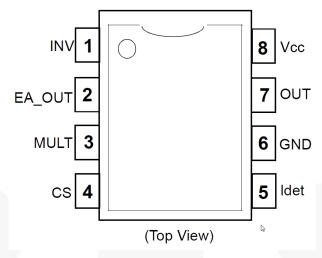


Figure 2. Pin Configuration

Pin Definitions

Pin#	Name	Description
1	INV	Inverting input of the error amplifier. The output of the boost converter should be resistively divided to 2.5 V and connected to this pin.
2	EA_OUT	Output of the error amplifier. Feedback compensation network is placed between this pin and the INV pin.
3	MULT	Input to the multiplier stage. The full-wave rectified AC voltage is divided to less than 2 V and is connected to this pin.
4	CS	Input of the PWM comparator. The MOSFET current is sensed by a resistor and the resulting voltage is applied to this pin. An internal R/C filter is included to reject high-frequency noise.
5	Idet	Zero Current Detection (ZCD) input.
6	GND	Ground
7	OUT	Gate driver output. Push-pull output stage is able to drive the power MOSFET with a peak current of 500 mA.
8	V _{cc}	Supply voltage of driver and control circuits.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Max.	Unit
V _{CC}	Supply Voltage			30	V
I _{OH} , I _{OL}	Peak Drive Output Current			±500	mA
I _{CLAMP}	Driver Output Clamping Diodes V _O > V _{CO}	c or V _O <-0.3 V		±10	mA
I _{DET}	Detector Clamping Diodes			±10	mA
V _{IN}	Error Amplifier Multiplier and Comparator Input Voltages		-0.3	6.0	V
TJ	Operation Junction Temperature			+150	°C
T _{OPR}	Operating Temperature Range		-25	+125	°C
T _{STG}	Storage Temperature Range		-65	+150	°C
/	Power Dissipation	8-SOP		0.8	W
P _D		8-DIP		1.1	W
0	Thermal Resistance Junction-Ambient	8-SOP		150	°C/W
Θ_{JA}		8-DIP		110	°C/W

Temperature Characteristics

 $-25^{\circ}\text{C} \le \text{T}_{\text{A}} \le 125^{\circ}\text{C}$.

Symbol	Parameter	Min.	Тур.	Max.	Unit
ΔV_{REF}	Temperature Stability Reference Voltage (V _{REF})		20		mV
ΔΚ/ΔΤ	Temperature Stability for Multiplier Gain (K)		-0.2		%/°C

Electrical Characteristics

 V_{CC} = 14 V, -25°C ≤ T_A ≤ 125°C, unless otherwise stated.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Under-Volta	ge Lockout		-1	I.	1	
$V_{th(st)}$	Start Threshold Voltage	V _{CC} Increasing	10.5	11.5	12.5	V
H _{Y(st)}	UVLO Hysteresis		2	3	4	V
Supply Curr	ent Section		-		-	
I _{ST}	Startup Supply Current	$V_{CC} = V_{th(st)}$ -0.2 V	10	60	100	μΑ
Icc	Operating Supply Current	Output Not Switching		3	6	mA
I _{CC(OVP)}	Operating Current at OVP	V _{INV} = 3 V		1.7	4.0	mA
I _{DCC}	Dynamic Operating Supply Current	50 kHz, C _I = 1 nF	-//	4	8	mA
Error Ampli	fier Section					
V	Voltage Foodbook Input Throobold	I _{REF} = 0 mA, T _A = 25°C	2.465	2.500	2.535	
V_{REF}	Voltage Feedback Input Threshold	25°C ≤ T _A ≤ 125°C	2.440	2.500	2.560	V
ΔV_{FEF1}	Line Regulation	14 V ≤ V _{CC} ≤ 25 V		0.1	10.0	mV
ΔV_{FEF3}	Temperature Stability of V _{REF} ⁽¹⁾	-25°C ≤ T _A ≤ 125°C		20		mV
I _{b(ea)}	Input Bias Current		-0.5		0.5	μA
I _{SOURCE}	Output Source Current	V _{M2} = 4 V	-2	-4		mA
I _{SINK}	Output Sink Current	V _{M2} = 4 V	2	4		mA
$V_{EAO(H)}$	Output Upper Clamp Voltage ⁽¹⁾	I _{SOURCE} = 0.1 mA		6		V
$V_{EAO(L)}$	Output Lower Clamp Voltage ⁽¹⁾	I _{SINK} = 0.1 mA		2.25		V
G _V	Large Signal Open-Loop Gain ⁽¹⁾	y.	60	80		dB
PSRR	Power Supply Rejection Ratio ⁽¹⁾	14 V ≤ V _{CC} ≤ 25 V	60	80		dB
GBW	Unity Gain Bandwidth ⁽¹⁾			1		MHZ
SR	Slew Rate ⁽¹⁾			0.6		V/µs
Multiplier Se	ection					
I _{b(m)}	Input Bias Current (Pin 3)		-0.5		0.5	μΑ
ΔV_{M1}	M1 Input Voltage Range (Pin 3)				3.8	V
ΔV_{M2}	M2 Input Voltage Range (Pin 2)		V_{REF}		V _{REF} +2.5	V
K	Multiplier Gain ⁽¹⁾	$V_{M1} = 1 \text{ V}, V_{M2} = 3.5 \text{ V}$	0.36	0.44	0.52	1 / V
$V_{OMAX(m)}$	Maximum Multiplier Output Voltage	$V_{INV} = 0 \ V, \ V_{M1} = 4 \ V$	1.65	1.80	1.95	V
ΔΚ/ΔΤ	Temperature Stability of K ⁽¹⁾	-25 ≤ T _A ≤ 125°C		-0.2	V	%/°C
Current Sen	se Section			•		
$V_{IO(CS)}$	Input Offset Voltage ⁽¹⁾	V _{M1} = 0 V, V _{M2} = 2.2 V	-10	3	10	mV
I _{b(CS)}	Input Bias Current	0 V ≤ V _{CS} ≤ 1.7 V	-1.0	-0.1	1.0	μA
t _{D(CS)}	Current Sense Delay to Output ⁽¹⁾			200	500	ns

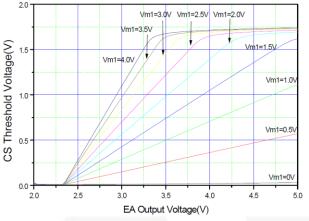
Continued on the following page...

Electrical Characteristics (Continued)

 V_{CC} = 14 V, -25°C ≤ T_A ≤ 125°C, unless otherwise stated.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
Zero Current Detect Section							
V _{TH(DET)}	Input Voltage Threshold	V _{DET} Increasing	1.7	2.0	2.3	V	
H _{Y(DET)}	Detect Hysteresis		0.2	0.5	0.8	V	
$V_{CLAMP(I)}$	Input Low Clamp Voltage	I _{DET} = -100 μA	0.45	0.75	1.00	V	
$V_{CLAMP(H)}$	Input High Clamp Voltage	I _{DET} = 3 mA	6.5	7.2	7.9	V	
I _{b(DET)}	Input Bias Current	1 V ≤ V _{DET} ≤ 5 V	-1.0	-0.1	1.0	μΑ	
I _{CLAMP(D)}	Input High/Low Clamp Diode Current ⁽¹⁾				±3	mA	
Output Sect	ion						
V _{OH}	Output Voltage High	I _O = -10 mA	10.5	11.0		V	
V _{OL}	Output Voltage Low	I _O = 10 mA		0.8	1.0	V	
t _R	Rising Time ⁽¹⁾	C _L = 1 nF		130	200	ns	
t _F	Falling Time ⁽¹⁾	C _L = 1 nF		50	120	ns	
V _{OMAX(O)}	Maximum Output Voltage	$V_{CC} = 20 \text{ V}, I_{O} = 100 \mu\text{A}$	12	14	16	V	
V _{OMIN(O)}	Output Voltage with UVLO Activated	$V_{CC} = 5 \text{ V}, I_{O} = 100 \mu\text{A}$		N.	1	V	
Restart Time	er Section						
t _{D(RST)}	Restart Time Delay	$V_{M1} = 1 \text{ V}, V_{M2} = 3.5 \text{ V}$		150		μs	
Over-Voltage Protection Section							
I _{SOVP}	Soft OVP Detecting Current		25	30	35	μA	
I _{DOVP}	Dynamic OVP Detecting Current		35	40	45	μΑ	
V _{OVP}	Static OVP Threshold Voltage	$V_{INV} = 2.7 \text{ V}$	2.10	2.25	2.40	V	

Note:


1. These parameters, although guaranteed, are not 100% tested in production.

Multiplier Gain:

$$K = \frac{Pin4_Threshold}{V_{M1} \times \left(V_{M2} - V_{REF}\right)}$$

where $V_{M1} = V_{PIN3}$, $V_{M2} = V_{PIN2}$

Typical Performance Characteristics

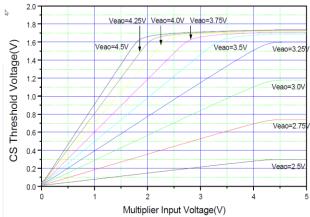
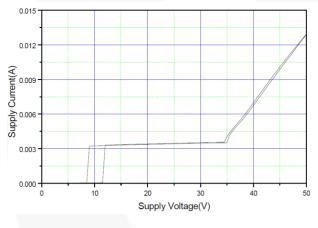



Figure 3. Error Amplifier Output Voltage vs. Current Sensing Threshold

Sensing Threshold

Figure 4.

Multiplier Input Voltage vs. Current

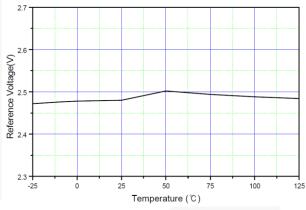
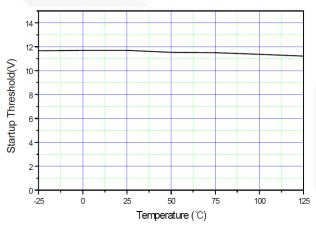



Figure 5. Supply Current vs. Supply Voltage

Figure 6. Reference Voltage vs. Temperature

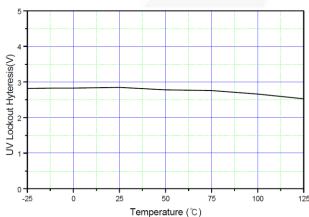
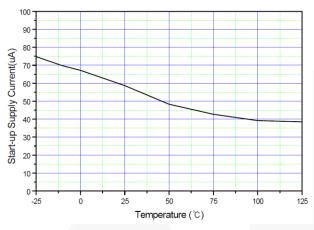



Figure 7. Startup Threshold vs. Temperature

Figure 8. UVLO Hysteresis vs. Temperature

Typical Performance Characteristics (Continued)

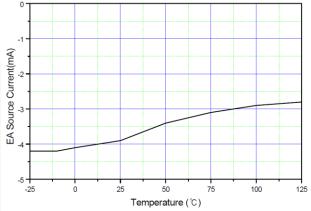
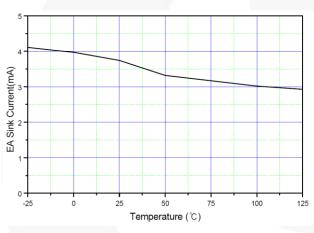



Figure 9. Startup Supply Current vs. Temperature

Figure 10. Error Amplifier Source Current

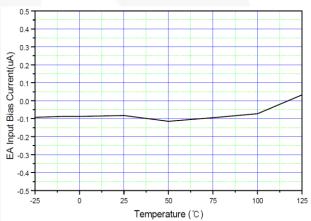
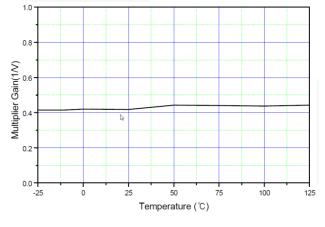



Figure 11. Error Amplifier Sink Current vs. Temperature

Figure 12. Error Amplifier Input Bias Current vs. Temperature

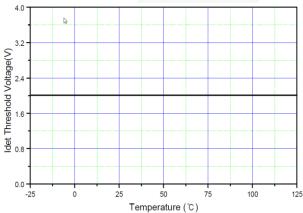
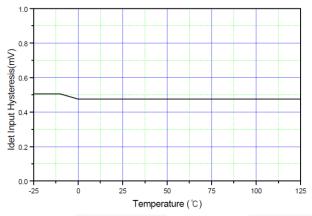



Figure 13. Multiplier Gain vs. Temperature

Figure 14. I_{DET} Threshold Voltage vs. Threshold

Typical Performance Characteristics (Continued)

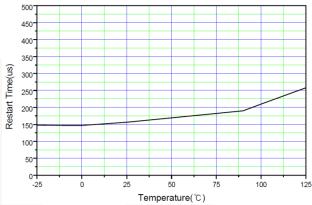
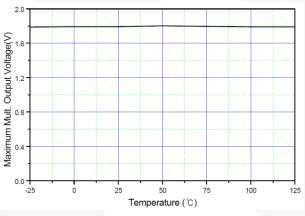



Figure 15. IDET Input Hysteresis vs. Temperature

Figure 16. Restart Time vs. Temperature

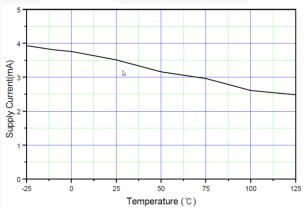
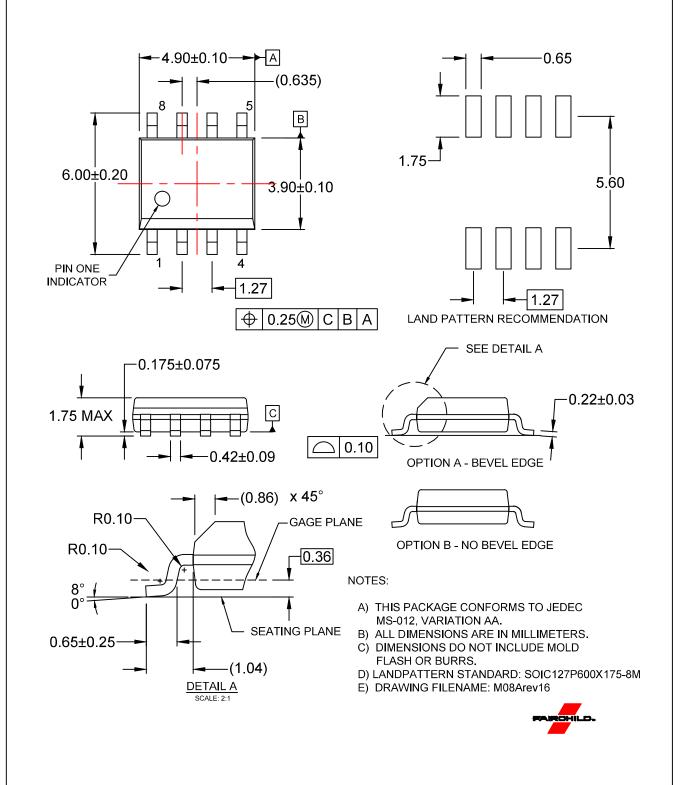
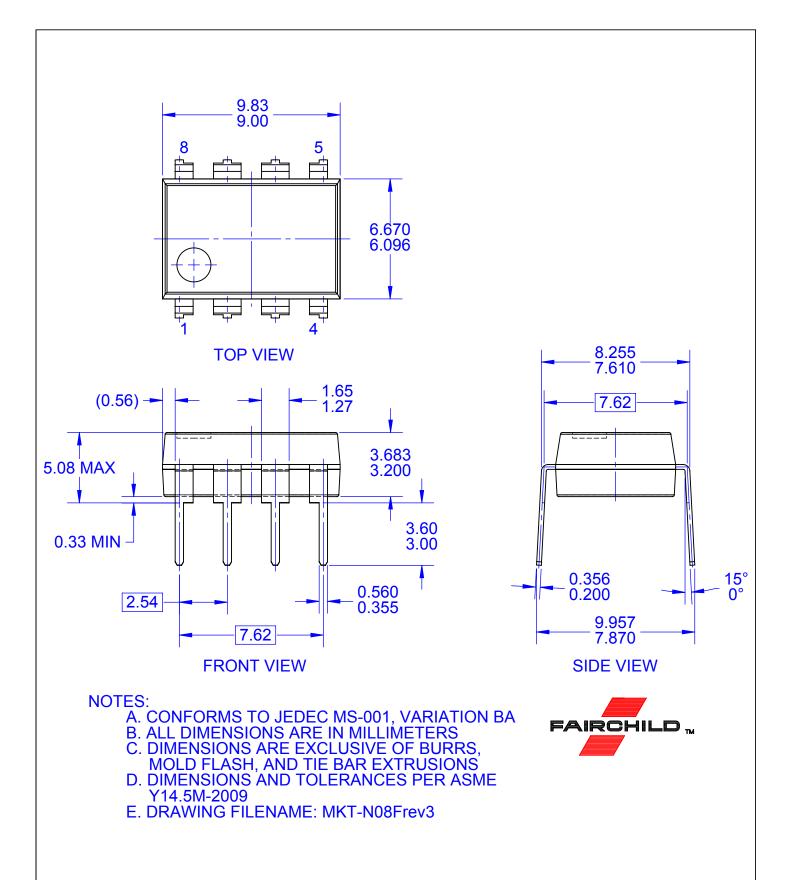




Figure 17. Maximum Multiplier Output Voltage vs. Temperature

Figure 18. Supply Current vs. Temperature

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Factor Correction - PFC category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

L6564TD FAN7930MX L4984D NCP1612A1DR2G NCP1618ADR2G TDA4863GXUMA2 ICE2PCS06GXUMA1 PFS7624C-TL
TDA48632GXUMA2 UCC29910APWR DCRG8 UCC2818AQDRQ1 L6561D013TR L6566B ICE3PCS03G AL1788W6-7
LT1249CN8#PBF NCP1616A1DR2G LT1509CN#PBF BR6000-R12 ICE3PCS02GXUMA1 DCRL5 B44066R6012E230
ICE2PCS01GXUMA1 ADP1048ARQZ-R7 LT1249IS8#PBF LT1249CS8#PBF FAN6920MRMY FAN4801SMY AL6562AS-13
ICE1PCS01G NCP1652DR2G ICE2PCS05GXUMA1 ICE2PCS01G ICE2PCS06G ICE3PCS01G ICE3PCS01GXUMA1 TDA4863
TDA4863-2 TDA4863-2G XDPL8210XUMA1 ISL6730AFUZ AP1682EMTR-G1 ISL6731BFBZ NCP1615A1DR2G NCP1605DR2G
LT1509CSW#PBF IRS2505LTRPBF TEA1761T/N2/DG,118 TEA1762T/N2/DG,118