

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FAN8831

Sinusoidal Piezoelectric Actuator Driver with Step-Up DC-DC Converter

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
FAN8831MPX	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$24-$ Lead, MLP	Tape \& Reel

Application Diagram

Figure 1. Typical Application Circuit for Piezo Actuator Driver

Internal Block Diagram

Figure 2. Functional Block Diagram

Pin Configuration

Figure 3. Pin Assignments

Pin Definitions

Pin \#	Name	Description
1,2	PGND1	Power Ground 1. It is connected to the source of the step-up switch.
3	V DD	Power supply of step-up DC-DC converter.
4	SGND	Signal Ground. The signal ground for step-up DC-DC converter circuitry.
5	ZCD	The input of the zero current detection.
6	FB	Step-up DC-DC converter output voltage feedback input.
7	COMP	Output of the transconductance error amplifier.
8	OCP	Sets Step-up DC-DC converter current limit.
9	FO	Fault Output.
10	EN	Enable pin to turn on and off the overall system. (Active Low Shutdown Mode).
11	INPUT	Logic input for sinusoidal waveform.
12	ADJ	Output voltage adjust control pin. Connect to internal current source to change output voltage using an external resistor. Connect a small capacitor (1 nF). 13
14	RT	Oscillator frequency control pin.
15	OVP	Voltage sense input of Step-up DC-DC converter for Over-Voltage Protection.
16	VIN	Analog Ground. The signal ground for full-bridge driver circuitry.
17	Vower supply of 5 V LDO.	
18	PGND2	Power supply of full-bridge driver.
19	NC	Nower Connected
20	OUT2	Output 2 for full-bridge driver.
21	OUT1	Output 1 for full-bridge driver.
22	NC	Not Connected
23	Lx	Switch Node. This pin is connected to the inductor.
24		

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Min.	Max.	Unit
$V_{\text {DRV }}$	DC Link Input Voltage Drain-Source Voltage of each MOSFET				75	V
$V_{\text {DD }}$	DC Supply Voltage for DC-DC Converter			-0.3	5.5	V
$\mathrm{V}_{\text {IN, DCDC }}$	EN, INPUT, FB and COMP to SGND			-0.3	$V_{D D}+0.3$	V
$\mathrm{V}_{\text {IN }}$	DC Supply Voltage for LDO			-0.3	75	V
VLX	LX to PGND			-0.3	36	V
PD	Power Dissipation ${ }^{(2)}$		1SOP with thermal vias ${ }^{(3)}$		0.98	W
			1S2P with thermal vias ${ }^{(4)}$		2.9	
$\theta_{\text {JA }}$	Thermal Resistance Junction-Air ${ }^{(2)}$		1SOP with thermal vias ${ }^{(3)}$		127	${ }^{\circ} \mathrm{C} / \mathrm{W}$
			1S2P with thermal vias ${ }^{(4)}$		43	
$\mathrm{T}_{\text {A }}$	Operating Ambient Temperature Range			-40	125	${ }^{\circ} \mathrm{C}$
T_{J}	Operating Junction Temperature			-55	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range			-55	150	${ }^{\circ} \mathrm{C}$
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114			2	KV
		Charged Device Model, JESD22-C101			500	V

Notes:

1. All voltage values, except differential voltages, are given with respect to SGND, AGND and PGND pin.
2. JEDEC standard: JESD51-2, JESD51-3. Mounted on $76.2 \times 114.3 \times 1.6 \mathrm{~mm}$ PCB (FR-4 glass epoxy material).
3. 1SOP with thermal vias: one signal layer with zero power plane and thermal vias.
4. 1S2P with thermal vias: one signal layer with two power plane and thermal vias.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {DRV }}$	Supply Voltage for Full-Bridge Driver	30		60	V
$\mathrm{~V}_{\mathrm{LX}}$	Boost Switch Voltage	10		30	V
$\mathrm{~V}_{\mathrm{DD}}$	Operating Voltage for DC-DC Converter	2.7	3.0	3.3	V
$\mathrm{~V}_{\mathrm{IN}}$	Operating Voltage for Voltage Regulator	10		60	V
$\mathrm{R}_{\text {OCP }}$	Current Limit Control Resistor	7.0		150	$\mathrm{k} \Omega$

Electrical Characteristics

$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=15.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DRV}}=60 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=70 \mathrm{~K} \Omega$ and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Typical values $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Power Supply Section						
$\mathrm{I}_{\mathrm{Q}, \mathrm{DD}}$	Quiescent Current for $\mathrm{V}_{\mathrm{DD}}{ }^{(5)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{COMP}}=\mathrm{V}_{\mathrm{DD}}, \\ & \mathrm{~V}_{\mathrm{FB}}=1.0 \mathrm{~V} \\ & \text { Device not switching } \end{aligned}$		700	1200	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{Q}, \mathrm{N}}$	Quiescent Current for $\mathrm{V}_{\text {IN }}$			300	500	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{Q}, \mathrm{DRV}}$	Quiescent Current for V ${ }_{\text {DRV }}$			200	300	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SD,DD }}$	Shutdown Current for V DD	$\begin{aligned} & V_{E N}=0 \mathrm{~V}, \\ & V_{D D}=V_{I N}=V_{D R V}=3 \mathrm{~V} \end{aligned}$			1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SD,IN }}$	Shutdown Current for $\mathrm{V}_{\text {IN }}$				1	$\mu \mathrm{A}$
IsD,DRV	Shutdown Current for V ${ }_{\text {DRV }}$			5	10	$\mu \mathrm{A}$
V ${ }_{\text {dDSTART }}$	Start Threshold Voltage		2.6	2.7	2.8	V
V ${ }_{\text {DDUVHYS }}$	$V_{\text {DD }}$ UVLO Hysteresis Voltage		0.1	0.2	0.3	V

Error Amplifier Section

V_{FB}	Feedback Reference Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.99	1.0	1.01	V
I_{FB}	FB pin Bias Current	$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V} \sim 2 \mathrm{~V}$			1	$\mu \mathrm{~A}$
$\Delta \mathrm{~V}_{\mathrm{FB} 1}$	Feedback Voltage Line Regulation ${ }^{(6)}$	$2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<5 \mathrm{~V}$		0.5	1.5	$\% / \mathrm{V}$
G_{m}	Transconductance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		800		$\mu \mathrm{mho}$

Zero Current Detect Section

$\mathrm{V}_{\mathrm{ZCD}}$	Input Voltage Threshold ${ }^{(7)}$		1.65	1.83	2.00	V
$\mathrm{~V}_{\mathrm{CLAMPH}}$	Input High Clamp Voltage	$\mathrm{I}_{\mathrm{DET}}=2.3 \mathrm{~mA}$	3.0	3.5	4.0	V
$\mathrm{~V}_{\text {CLAMPL }}$	Input Low Clamp Voltage	$\mathrm{I}_{\mathrm{DET}}=-2.3 \mathrm{~mA}$	-0.30	0.12	0.50	V
$\mathrm{I}_{\mathrm{ZCD}, \mathrm{SR}}$	Source Current Capability				-2.3	mA
$\mathrm{I}_{\mathrm{ZCD}, \mathrm{SK}}$	Sink Current Capability				2.3	mA
$\mathrm{t}_{\mathrm{ZCD}, \mathrm{D}}$	Delay From ZCD to Output Turn-On ${ }^{(7)}$			50	200	ns

Maximum On-Time Section

| toN,MAX | Maximum On-Time | | 15 | 25 | 35 | $\mu \mathrm{~s}$ |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Restart / Maximum Switching Frequency Limit Section | | 15 | 25 | 35 | $\mu \mathrm{~s}$ | |
| $\mathrm{t}_{\text {RST }}$ | Restart Timer | | | 900 | 1000 | KHz |
| $\mathrm{f}_{\text {MAX }}$ | Maximum Switching Frequency ${ }^{(7)}$ | | | | | |

Soft-Start Timer Section

tss	Internal Soft-Start		16	28	40	ms
Current Limit Comparator Section						
locp	OCP Trip Current	$\mathrm{R}_{\text {OCP }}=3.3 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	1.85	2.00	2.15	A
		$\mathrm{R}_{\text {OCP }}=22 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	0.9	1.0	1.1	A
tcs_blank	Comparator Leading-Edge Blanking Time ${ }^{(7)}$		80	130	180	ns

Notes:

5. This is the VDD current consumed when active but not switching. Does not include gate-drive current
6. The line regulation is calculated based on

$$
\frac{\Delta V_{\text {OUT }}}{\Delta V_{I N}} \times \frac{1}{V_{\text {OUT }}}
$$

7. This parameter, although guaranteed by design, is not tested in production.

Electrical Characteristics

$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathbb{I}}=15.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DRV}}=60 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=70 \mathrm{~K} \Omega$ and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Typical values $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Step-Up Switch Section						
$\mathrm{R}_{\text {DSON }}$	N-Channel On Resistance	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.2	0.5	Ω
lLK_LX	LX Leakage Current	$\mathrm{V}_{\mathrm{Lx}}=36 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
Oscillator Section						
fosc	Operating Frequency	$\mathrm{R}_{\mathrm{T}}=58 \mathrm{~K} \Omega$	40	50	60	KHz
		$\mathrm{R}_{\mathrm{T}}=121 \mathrm{~K} \Omega$	20	25	30	KHz
Logic (EN and INPUT) Section						
$\mathrm{V}_{\text {InPut }+}$	INPUT Logic High Threshold Voltage		1.34			V
Vinput-	INPUT Logic Low Threshold Voltage				0.5	V
linput-	Input Low Current for INPUT and EN	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
linfut_{+}	Input High Current for INPUT and EN	$\mathrm{V}_{\text {EN }}=\mathrm{V}_{\mathrm{DD}}$	8	12	16	$\mu \mathrm{A}$
$\mathrm{R}_{\text {INPUT }}$	Input Logic Pull-Down Resistance	$\mathrm{V}_{\text {EN }}=\mathrm{V}_{\text {INPUT }}=3 \mathrm{~V}$		250	375	$\mathrm{K} \Omega$
$\mathrm{finput}^{\text {a }}$	Input Logic Operating Frequency ${ }^{(8)}$		20		1000	Hz

Full-Bridge Switch Section

$\mathrm{R}_{\mathrm{Ds}, \mathrm{oNP}}$	Output Upper-Side On Resistance	$\mathrm{T}_{\mathrm{A}=25^{\circ} \mathrm{C}}$		3.0	5.0	Ω
$\mathrm{R}_{\mathrm{DS}, \mathrm{ONN}}$	Output Low-Side On Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0	5.0	Ω

Output Control Section

$\mathrm{V}_{\mathrm{ADJ}, \mathrm{MAX}}$	Analog Output Control Maximum Voltage ${ }^{(8)}$	$\mathrm{V}_{\mathrm{DRV}=100 \%}$ of Target		1.0		V
$\mathrm{~V}_{\mathrm{ADJ}, \mathrm{MIN}}$	Analog Output Control Minimum Voltage ${ }^{(8)}$			0.1		V
$\mathrm{I}_{\mathrm{ADJ}+}$	Internal Current Source for ADJ Pin	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	9	10	11	$\mu \mathrm{~A}$

Protection (Ready, OVP and TSD)

$V_{\text {Ready }}$	Output Ready Threshold Voltage		0.75	0.80	0.85	V
HY Ready	Output Ready Hysteresis			0.2		V
Vovp_fB	OVP Threshold Voltage at FB Pin		1.05	1.10	1.15	V
HYovp_fB	OVP Hysteresis Voltage at FB Pin			0.1		V
Vovp_ovp	OVP Threshold Voltage at OVP Pin		1.10	1.15	1.20	V
HYovp_ovp	OVP Hysteresis Voltage at OVP Pin			0.15		V
Tsd	Thermal Shutdown Temperature ${ }^{(8)}$			150		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {HYS }}$	Hysteresis Temperature of TSD ${ }^{(8)}$			50		${ }^{\circ} \mathrm{C}$
T_{FO}	Fault Output Duration			20	30	$\mu \mathrm{s}$
$\mathrm{V}_{\mathrm{FOL}}$	Fault Output Low Level Voltage	$\mathrm{R}_{\mathrm{PU}}=50 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{PU}}=3 \mathrm{~V}$		0.1	0.4	V

Note:

8. This parameter, although guaranteed by design, is not tested in production.

Typical Performance Characteristics

Figure 4. Reference Voltage vs. Temperature

Figure 6. $\quad V_{D D}$ UVLO vs. Temperature

Figure 8. Quiescent Current for $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DRV}}$, \& V_{IN} vs. Temperature

Figure 10. Operating Current for $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DRV}}$, \& V_{IN} vs. Temperature

Figure 5. Shutdown Current for $\mathrm{V}_{\mathrm{DRV}} \& \mathrm{~V}_{\mathrm{IN}}$ vs. Temperature

Figure 7. ADJ Current vs. Temperature

Figure 9. OCP Current vs. Temperature

Figure 11. ZDC Clamp Voltage vs. Temperature

Typical Performance Characteristics

Figure 12. Maximum On-Time vs. Temperature

Figure 14. Restart-Time vs. Temperature

Figure 16. Soft-Start Time vs. Temperature

Figure 18. Enable (EN) Threshold Voltage vs. Temperature

Figure 13. Fist OVP (FB) vs. Temperature

Figure 15. Second (OVP) vs. Temperature

Figure 17. Ready Voltage vs. Temperature

Figure 19. INPUT Threshold Voltage vs. Temperature

Typical Performance Characteristics

Figure 20. Boost Switch R $\mathrm{R}_{\mathrm{DoN}}$ vs. Temperature

Figure 22. Full-Bridge Switch R ${ }_{\text {Dson }}$ vs. Temperature

Figure 24. locp vs. Rocp

Figure 21. \% of Sine Amplitude vs. $\mathbf{R}_{\text {ADJ }}$

Figure 23. fosc Vs. RT

BOTTOM VIEW PIN ONE OPTIONS

NOTES:

A. CONFORMS TO JEDEC REGISTRATION MO-220, VARIATION WGGD-6.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
D. LAND PATTERN IPC REFERENCE : QFN50P400X400X80-25W6N.
E. DRAWING FILENAME: MKT-MLP24Erev5.

BOTTOM VIEW

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :

```
00053P0231 56956 57.404.7355.5 LT4936 57.904.0755.0 5882900001 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 01-
1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24
00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-
RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 0207400000 01312
0134220000 60713816 M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P}\mathrm{ 6131-
220-21149P 6131-260-2358P 6131-265-11149P CS1HCPU63
```


[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

