

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

FAIRCHILD

SEMICONDUCTOR

March 2014

FBA42060 PFC SPM[®] 45 Series for Single-Phase Boost PFC

Features

- UL Certified No. E209204 (UL1557)
- 600 V 20 A Single-Phase Boost PFC with Integral Gate Driver and Protection
- Low Thermal Resistance Using Ceramic Substrate
- Full-Wave Bridge Rectifier and High-Performance Output Diode
- Optimized for 20kHz Switching Frequency
- · Built-in NTC Thermistor for Temperature Monitoring
- Isolation Rating: 2000 Vrms/min.

Applications

Single-Phase Boost PFC Converter

Related Source

- AN-9091 Boost PFC Inductor Design Guide
- <u>AN-9072 Motion SPM® 45 Series Mounting Guid-</u> ance

General Description

The FBA42060 is an advanced PFC SPM[®] 45 module providing a fully-featured, high-performance Boost PFC (Power Factor Correction) input power stage for consumer, medical, and industrial applications. These modules integrate optimized gate drive of the built-in IGBT to minimize EMI and losses, while also providing multiple on-module protection features including under-voltage lockout, over-current shutdown, thermal monitoring, and fault reporting. These modules also feature a full-wave rectifier and high-performance output diode for additional space savings and mounting convenience.

Figure 1. Package Overview

Package Marking & Ordering Information

Device	Device Marking Package		Packing Type	Quantity
FBA42060	FBA42060	SPMAA-F26	Rail	12

Integrated Drive, Protection and System Control Functions

- For IGBTs: gate drive circuit, Over-Current Protection (OCP), control supply circuit Under-Voltage Lock-Out (UVLO) Protection
- · Fault signal: corresponding to OC and UV fault
- Built-in NTC thermistor: temperature monitoring
- Input interface: active-HIGH interface, works with 3.3 / 5 V logic, Schmitt trigger input

Pin Configuration

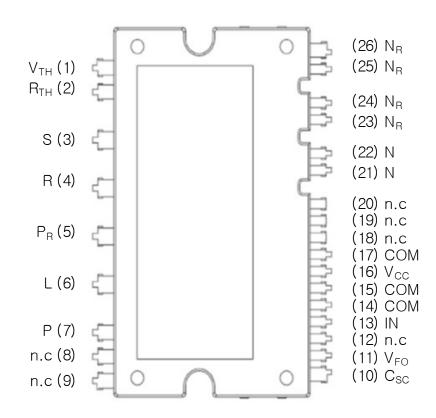
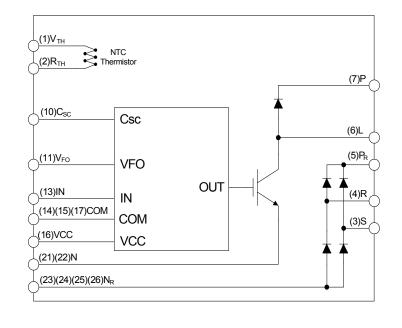



Figure 2. Top View

Pin Number	Pin Name	Pin Description			
1	V _{TH}	Thermistor Bias Voltage			
2	R _{TH}	eries Resistor for The Use of Thermistor			
3	S	AC Input for S-Phase			
4	R	AC Input for R-Phase			
5	P _R	Positive DC-Link of Rectifier			
6	L	uctor Connection			
7	Р	Positive DC-Link Input			
8, 9	N.C	-			
10	C _{OC}	Signal Input for Over-Current Detection			
11	V _{FO}	Fault Output			
12	N.C	-			
13	IN	PWM Input for IGBT Drive			
14	СОМ	Common Supply Ground			
15	СОМ	Common Supply Ground			
16	V _{CC}	Common Supply Voltage of IC for IGBT Drive			
17	СОМ	Common Supply Ground			
18 ~ 20	N.C	-			
21, 22	Ν	Negative DC-Link Input			
23 ~ 26	N _R	Negative DC-Link of Rectifier Diode			

Internal Equivalent Circuit

Figure 3. Internal Block Diagram

3

FBA42060 PFC SPM® 45 Series for Single-Phase Boost PFC

FBA42060 PFC SPM® 45 Series for Single-Phase Boost PFC

Absolute Maximum Ratings

Converter Part

Symbol	Parameter	Conditions	Rating	Unit
Vi	Input Supply Voltage	Applied between R - S	276	V _{rms}
V _{i(Surge)}	Input Supply Voltage (Surge)	Applied between R - S	500	V
V _{PN}	Output Voltage	Applied between P _R - N _R	450	V
V _{PN(Surge)}	Output Supply Voltage (Surge)	Applied between P _R - N _R	500	V
V _{CES}	Collector - Emitter Voltage		600	V
V _{RRM}	Repetitive Peak Reverse Voltage		600	V
± I _C	Each IGBT Collector Current	T _C = 25°C, V _{CC} = 15 V	20	А
± I _{CP}	Each IGBT Collector Current (Peak)	$T_C = 25^{\circ}C$, Under 1 ms Pulse Width	30	А
I _{FSM}	Peak Forward Surge Current	Single Half Sine-Wave	200	А
TJ	Operating Junction Temperature		-40 ~ 150	°C

Control Part

Symbol	Parameter	Conditions	Rating	Unit
V _{CC}	Control Supply Voltage	Applied between V _{CC} - COM	20	V
V _{IN}	Input Signal Voltage	Applied between IN - COM	$-0.3 \sim V_{CC} + 0.3$	V
V _{FO}	Fault Output Supply Voltage	Applied between V _{FO} - COM	$-0.3 \sim V_{CC} + 0.3$	V
I _{FO}	Fault Output Current	Sink Current at V _{FO} Pin	1	mA
V _{SC}	Current Sensing Input Voltage	Applied between C _{SC} - COM	$-0.3 \sim V_{CC} + 0.3$	V

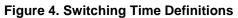
Total System

Symbol	Parameter	Conditions	Rating	Unit
T _{STG}	Storage Temperature		-40 ~ 125	°C
V _{ISO}	Isolation Voltage	60 Hz, Sinusoidal, AC 1 Minute, Connect Pins to Heat Sink Plate	2000	V _{rms}

Thermal Resistance

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
R _{th(j-c)Q}	Junction to Case Thermal	IGBT	-	-	2.5	°C/W
R _{th(j-c)D}	Resistance at Chip Center	FRD	-	-	2.5	°C/W
R _{th(j-c)R}		Rectifier	-	-	2.5	°C/W

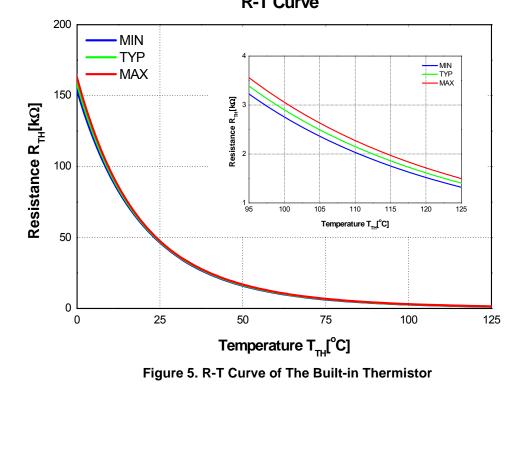
Electrical Characteristics ($T_J = 25^{\circ}C$, unless otherwise specified.)


Converter Part

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{CE(SAT)}	IGBT Collector - Emitter Saturation Voltage	V _{CC} = 15 V, V _{IN} = 5V, I _C = 20 A	-	2.2	2.7	V
V _{FF}	FRD Forward Voltage	I _F = 20 A	-	2.1	2.6	V
V _{FR}	Rectifier Forward Voltage	I _F = 20 A	-	1.1	1.4	V
t _{ON}	Switching Characteristic	V _{PN} = 300 V, V _{CC} = 15 V, I _C = 20 A,	-	770	-	ns
t _{OFF}		V_{IN} = 0 V \leftrightarrow 5 V, Inductive Load (1st Note 1)	-	640	-	ns
t _{C(ON)}			-	130	-	ns
t _{C(OFF)}	-		-	50	-	ns
trr	-		-	40	-	ns
Irr			-	4.0	-	А
I _{CES}	Collector - Emitter Leakage Current	V _{CE} = V _{CES}	-	-	1	mA

1st Notes:

1. ton and toFF include the propagation delay of the internal drive IC. t_{C(ON)} and t_{C(OFF)} are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Figure 4.



Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _{QCC}	Quiescent V _{CC} Supply Current	V_{CC} = 15 V, V_{IN} = 0V, V_{CC} - COM	-	-	2.65	mA
V _{FOH}	Fault Output Voltage	V_{SC} = 0 V, V_{FO} Circuit: 4.7 k Ω to 5 V Pull-up	4.5	-	-	V
V _{FOL}		V_{SC} = 1 V, V_{FO} Circuit: 4.7 k Ω to 5 V Pull-up	-	-	0.8	V
V _{SC(ref)}	Over-Current Protection Trip Level Voltage of C _{SC} pin	V _{CC} = 15 V (1st Note 2)	0.45	0.50	0.55	V
UV _{CCD}	Supply Circuit Under-	Detection Level	10.5		13.0	V
UV _{CCR}	Voltage Protection	Reset Level	11.0		13.5	V
V _{IN(ON)}	ON Threshold Voltage	Applied between IN - COM	-	-	2.6	V
V _{IN(OFF)}	OFF Threshold Voltage		0.8	-	-	V
R _{TH}	Resistance of Thermistor	T _{TH} = 25°C (1st Note 3)	-	47.0	-	kΩ
		T _{TH} = 100°C	-	2.9	-	kΩ

1st Notes:

2. Over-current protection is functioning on IGBT.

3. T_{TH} is the temperature of thermister itself. To know case temperature (T_C), please make the experiment considering your application.

R-T Curve

Recomended Operating Conditions

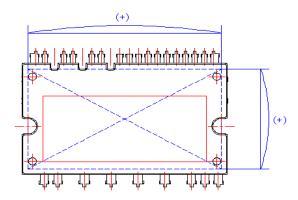
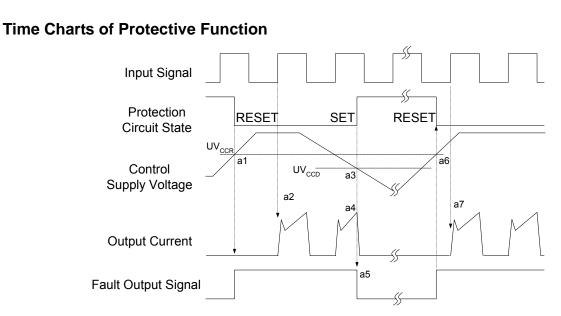
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _i	Input Supply Voltage	Applied between R - S	198	220	242	V _{rms}
V _{PN}	Supply Voltage	Applied between P _R - N	-	360	400	V
l _i	Input Current	V_{DC} = 360 V, F _{SW} = 20 kHz, V _{CC} = 15 V, T _C = 90°C, T _J \leq 150°C	-	20	-	A _{peak}
V _{CC}	Supply Voltage for inverter	Applied between V _{CC} - COM	13.5	15.0	16.5	V
P _{WIN(ON)}	Minimum Input Pulse Width	(1st Note 4)	0.5	-	-	μS
P _{WIN(OFF)}			0.5	-	-	μS
dV _{CC} /dt	Supply Variation		-1	-	1	V/μs
f _{PWM}	PWM Input Frequency	T _J ≤ 150°C	-	20	-	kHz
V_{SEN}	Voltage for Current Sensing	Applied between N - COM (Including surge voltage)	-4	-	4	V

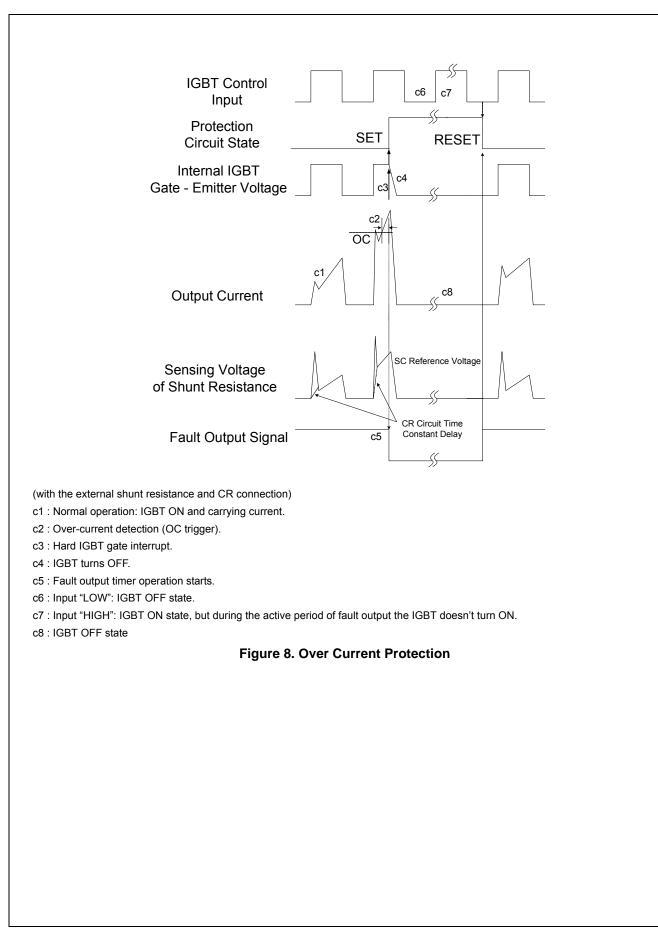
1st Notes:

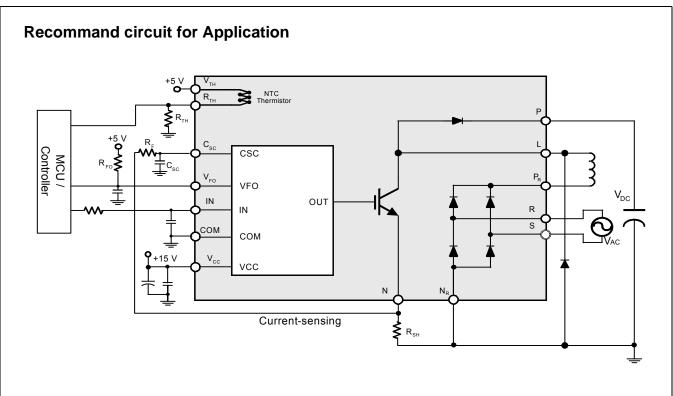
4. The PFC SPM[®] product might not make response if input pulse width is less than the recommended value.

Mechanical Characteristics and Ratings

Parameter	Conditions		Min.	Тур.	Max.	Unit
Mounting Torque	Mounting Screw: M3	Recommended 0.7 N•m	0.6	0.7	0.8	N•m
Device Flatness		See Figure 6	0	-	+120	μm
Weight			-	11	-	g


Figure 6. Flatness Measurement Position



a1 : Control supply voltage rises: after the voltage rises UV_{CCR}, the circuits start to operate when the next input is applied.

- a2 : Normal operation: IGBT ON and carrying current.
- a3 : Under-voltage detection (UV_{CCD}).
- a4 : IGBT OFF in spite of control input condition.
- a5 : Fault output operation starts.
- a6 : Under-voltage reset (UV $_{\mbox{CCR}}$).
- a7 : Normal operation: IGBT ON and carrying current.

Figure 7. Under-Voltage Protection

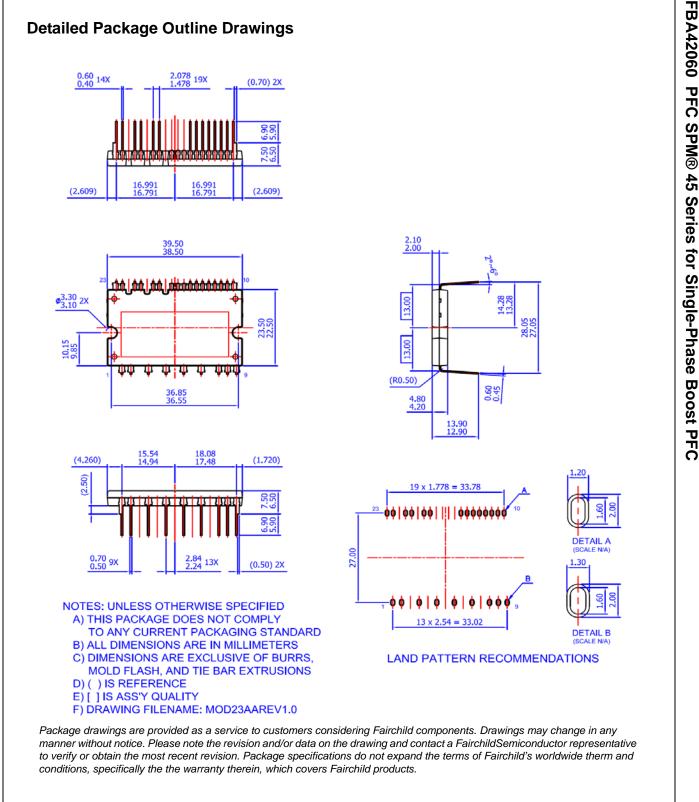
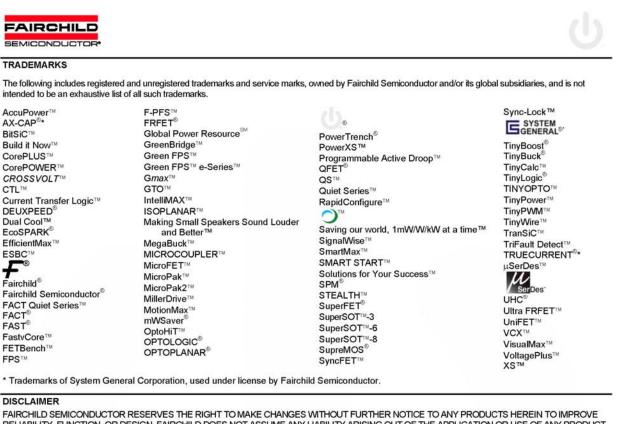


Figure 9. Typical Application Circuit


2nd Notes:

- 1. To avoid malfunction, the wiring of each input should be as short as possible (less than 2 3 cm).
- 2. V_{FO} output is open-drain type. This signal line should be pulled up to the positive side of the MCU or PFC controller power supply with a resistor that makes I_{FO} up to 1 mA.
- Input signal is active-HIGH type. There is a 5 kΩ resistor inside the IC to pull-down each input signal line to GND. RC coupling circuits is recommanded for the prevention of input signal oscillation. R_SC_{PS} time constant should be selected in the range 50 ~ 150 ns (recommended R_S = 100 Ω, C_{PS} = 1 nF).
- 4. To prevent errors of the protection function, the wiring around R_F and C_{SC} should be as short as possible.
- 5. In the over-current protection circuit, please select the R_F, C_{SC} time constant in the range 1~2 μ s.
- 6. Each capacitors should be mounted as close to the pins as possible.
- 7. Relays are used in almost every systems of electrical equipment in home appliances. In these cases, there should be sufficient distance between the MCU and the relays.
- 8. Internal NTC thermistor can be used for monitoring the case temperature and protecting the device from the over-heating operation. Please select an appropriate resistor RTH according to the application. For example, use R_{TH} = 4.7 k Ω that will make the voltage across R_{TH} to be 2.5 V at 85°C of the case temperature.
- 9. Please use an appropriate shunt resistor R_{SH} to protect the intenal IGBT from the over-current operation.
- 10. It's recommended that anti-parallel diode should be connected with IGBT.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/dwg/MO/MOD23AA.pdf

FAIRCHILD SENICONDUCTOR RESERVES THE RIGHT TO MARE CHANGES WITHOUTFUR THER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty overage or other assistance for parts bought from Unauthorized Surces. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 166

FBA42060

PFC

SPM® 45 Series for Single-Phase Boost PFC

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Factor Correction - PFC category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

L6564TD FAN7930MX L4984D NCP1612A1DR2G NCP1618ADR2G TDA4863GXUMA2 ICE2PCS06GXUMA1 PFS7624C-TL TDA48632GXUMA2 UCC29910APWR UCC2818AQDRQ1 TDA4862GGEGXUMA2 L6561D013TR L6566B ICE3PCS03G AL1788W6-7 LT1249CN8#PBF NCP1616A1DR2G LT1509CN#PBF BR6000-R12 ICE3PCS02GXUMA1 DCRL5 B44066R6012E230 ICE2PCS01GXUMA1 ADP1048ARQZ-R7 LT1249IS8#PBF LT1249CS8#PBF FAN6920MRMY FAN4801SMY AL6562AS-13 ICE1PCS01G NCP1652DR2G ICE2PCS05GXUMA1 ICE2PCS01G ICE2PCS06G ICE3PCS01G ICE3PCS01GXUMA1 TDA4863 TDA4863-2 TDA4863-2G XDPL8210XUMA1 AP1682EMTR-G1 ISL6731BFBZ NCP1615A1DR2G NCP1605DR2G LT1509CSW#PBF IRS2505LTRPBF TEA1761T/N2/DG,118 TEA1762T/N2/DG,118 TEA1791T/N1,118